AI彻底战胜了物理学家

作者: 阿尼尔·阿南塔斯瓦米(Anil Ananthaswamy)

来源: 环球科学

发布日期: 2021-07-13

机器学习系统在量子物理实验前沿取得了惊人进展,通过创建和匹配标准量子实验的部件,为新问题找到实验方案。MELVIN和THESEUS等算法不仅加快了运算速度,还提出了新的实验方案,推动了量子力学的研究。这些算法通过生成和简化图的形式,帮助物理学家理解和设计复杂的量子态实验。

原本为加快运算速度而建立的机器学习系统,在量子物理实验前沿也取得了惊人进展。量子物理学家马里奥·克莱恩记得,在2016年年初的一天,他正坐在维也纳的一家咖啡馆里研究电脑输出的数据,试图理解MELVIN的发现。MELVIN是克莱恩创建的机器学习算法,它的工作是组合和匹配标准量子实验的部件,为新问题找到实验方案。MELVIN确实取得了许多有趣的发现,但其中一个却解释不通。

克莱恩意识到,这个算法重新发现了一种在20世纪90年代初设计出来的实验配置,但当时的实验要简单很多,而MELVIN则破解了一个复杂得多的难题。从那时起,其他团队也开始执行MELVIN设计的实验,用新的方式检测量子力学的概念基础。与此同时,克莱恩和多伦多的同事们一起改进了机器学习算法。

他们对最新的研究成果——一种名为THESEUS的人工智能算法——提出了更高要求:它的运行速度比MELVIN快了几个数量级,而且人们可以很容易地解析它的输出。瑞士苏黎世联邦理工学院理论物理研究所的理论量子物理学家雷纳托·雷纳说:“这是一项了不起的工作。”这个研究项目是克莱恩无意中提出的,当时他和同事们正试图弄清楚如何通过实验让光子以一种非常特殊的方式进行纠缠。

当两个光子相互作用时,它们会纠缠在一起,二者在数学上只能用一个共享的量子态进行描述。即使两个光子相距数千米之远,如果你测量其中一个光子的状态,另一个光子的状态也会立刻确定。1989年,三位物理学家——丹尼尔·格林伯格、已故的迈克尔·霍恩和泽林格——描述了一种被称为“GHZ”的纠缠态的纠缠态。它包含4个光子,每个光子都可以处在0和1这两种态的叠加之下。这种量子态被称为量子比特(qubit)。

在他们的论文中,GHZ态涉及4个量子比特,整个系统处于0000态和1111态的二维量子叠加中。如果你测量其中一个光子,发现它处于0态,叠加态会坍缩,其他光子也会处于0态。1态也是同样的道理。20世纪90年代末,泽林格和同事们用3个量子比特首次对GHZ态进行了实验观测。克莱恩和同事们的目标是更高维的GHZ态。他们想研究3个光子,每个光子的维度为3,这意味着它可能是0、1和2这3种态的叠加。

这种量子态被称为3维量子比特(qutrit)。研究小组的目标纠缠态是一种3维GHZ态,它是000态、111态和222态的叠加。这种叠加态是量子通信和量子计算的重要组成部分。2013年年末,研究人员花了数周时间在黑板上设计实验并进行计算,以观察他们的设置能否产生所需的量子态。但是,他们的每次尝试都失败了。为了加快进程,克莱恩编写了一个计算机程序,输入实验设置,计算出实验方案。

然后他对程序进行了升级,使其能够在计算中加入实验人员在光学工作台上创建和操纵光子用的部件:激光器、非线性晶体、分束器、移相器、全息图等等。程序通过随机组合和匹配部件,在大空间中搜索配置,执行计算并输出结果——MELVIN就这样诞生了。正是这个进化后的MELVIN让克莱恩在维也纳的咖啡馆里挠头。他运行起这个程序,其工具箱里有两个晶体,每个晶体能产生一对在3维空间中纠缠的光子。

克莱恩天真地期待MELVIN会找到将这些光子对结合起来的配置,从而产生至多9维的纠缠态。但是“它实际上找到了另一种方案,一种极为罕见的情况,产生的纠缠度比其他态高得多,”克莱恩说。最终,他发现MELVIN使用的是近30年前,由多个团队分别开发的一种技术。1991,邹新宇、王力军和伦纳德·曼德尔在罗切斯特大学设计了一种方案。而在1994年,还在奥地利因斯布鲁克大学的泽林格和同事想出了另一种方案。

从概念上讲,这些实验试图做的是类似的事情,但是泽林格和同事设计的方案更容易理解。其中一个晶体首先产生了一对光子(A和B)。这对光子的光路正好穿过另一个晶体,这个晶体也产生了两个光子(C和D)。来自第一个晶体的光子A和来自第二个晶体的光子C的光路完全重叠并通向同一探测器。如果探测器发出信号,这时就无法判断光子是来自第一个晶体还是第二个晶体。光子B和D也是如此。

MELVIN别致的实验方案用到了这种重叠光路。令克莱恩困惑的是,这个算法的工具箱里只有两个晶体,它没有在实验开头使用这些晶体,而是将它们塞进干涉仪(一种将光子光路分成两部分再重新组合的装置)。经过一番努力,克莱恩意识到MELVIN给出的方案等效于包含两个以上晶体,每个晶体产生一对光子,它们到探测器的路径重叠。这种配置可以用来产生高维纠缠态。

当MELVIN正在进行计算时,量子物理学家诺拉·蒂施勒还是博士生,正在和泽林格一起研究一个不相关的课题。他们当时也在关注这些进展。她说:“一开始就很清楚的是,如果不是被算法发现,这样的实验根本不会存在。”除了产生复杂的纠缠态,MELVIN的方案还可以用于执行泽林格1994年用两个晶体开展的量子干涉实验的推广形式。

多伦多大学的实验物理学家艾弗拉姆·斯坦伯格是克莱恩的同事,他没有参与这些项目,但对人工智能的发现印象深刻。“据我所知,这个推广形式几十年来,甚至永远都不会有人想到,”他说,“这是这些思维机器带领我们进行探索的第一个绝佳案例。

”然而实现这个实验一直是个遥远的梦想,直到今年3月的一篇预印本论文中,中国科学技术大学冯兰天所在的团队与克莱恩合作,在单个光子芯片上制造了整个装置并开展了实验,他们收集了超过16个小时的数据。光子芯片惊人的光学稳定性使得该实验成为可能,而这在大规模桌面实验中是不可能实现的。斯坦伯格说,对于初学者来说,这种设置需要在光学平台上精确对准一平方米的光学元件。

此外,“在这16个小时内,单个光学元件即使是抖动或移动了相当于头发丝直径千分之一的距离,就足以消除实验效果。”他说。尝试简化和概括MELVIN的发现时,克莱恩和同事们意识到该实验方案类似于一种叫做图(graph)的抽象数学形式。一张图包含顶点和边,用于描绘对象之间的成对关系。在这些量子实验里,光子所走的每条路径都由一个顶点表示,而晶体由连接两个顶点的边表示。

MELVIN首先生成这样的图,然后对其进行数学运算。这种运算被称作“完美匹配”,包括生成一个等效图,其中每个顶点仅连接到一条边。经过这个过程,对最终量子态的计算变得容易很多,尽管对人类来说理解起来仍然有困难。MELVIN的继任者THESEUS改变了这一点,它通过筛选第一批复杂的图来生成更简单的图,这些复杂的图代表含有最小数量的边和顶点的设计方案(任何进一步的简化都会破坏目标量子态的生成)。

这类图比MELVIN完美匹配得来的图更简单,因此更容易理解。THESEUS更易于理解的输出给雷纳留下了深刻印象。“它的实验方案的设计原则是尽量减少图中的连接数量,”他说,“比起那些非常复杂的图,我们自然能更好地理解这些方案。”澳大利亚格里菲斯大学的埃里克·卡瓦尔坎蒂对这项工作印象深刻,但也保持着谨慎态度。

“这些机器学习技术代表了一类有趣的进展,人类查看这些数据并解释它们,看上去一些设计方案像是有创造性的新方案。但在现阶段,这些算法还远未达到具有真正的新想法或提出新概念的水平,”他说,“另一方面,我的确认为有一天它们会到达那种程度。这些还只是起步,我们总要从某个地方开始。”斯坦伯格同意这一点。“目前看来它们只是很棒的工具,”他说,“就像所有最好的工具一样,有了它们,我们就能做一些全新的事情。”

UUID: cb507aca-714d-459b-abf6-dd88405a6e2e

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/环球科学公众号-pdf2txt/2021/2021-07-13_在这件事情上,AI彻底战胜了物理学家.txt

是否为广告: 否

处理费用: 0.0076 元