洗澡的时候水温把握不住?可能是你没有学好数学。天气越来越热了,这个时候能舒舒服服冲个澡自然是再开心不过了。但是很多朋友都有过这样的经历:水龙头出来的水要么太凉要么太热,怎么也调不到满意的温度。要解决这个问题,就要涉及到我们今天要说的延迟方程了。
相信大家都有过这样的经历:在淋浴时感觉水太冷了,所以你打开了热水龙头。但是水温不会马上变化——因为热水需要时间来流经管道——因此你最终会把温度调得更高。之后热水流过了管道,从花洒流到你身上。但是这时温度又太高了。于是你马上把热水龙头关上,但等到效果显现的时候,水又太冷了。所以你又得把温度调高。如此循环往复——似乎不可能调到正确的温度。
有一个方程可以描述这种情况。
从气候变化到COVID-19,这个等式的应用已经远远超出了浴室的范围。这是因为世界上的很多过程会涉及经过延迟才会产生的效应。但在讲述它的应用之前,让我们看一下这个方程。我们写下在t时刻感受到的水的温度T(t)。假设水要花d秒的时间才能流过管道。那么淋浴方程便是(1)。我们回顾下这个表达式。左边表示t时刻水的温度变化率,正值代表着t时刻水温增加,负值代表着t时刻水温降低。
正值越大(或负值越小),在t时刻的温度升高(或降低)的速度越快。方程的右边告诉我们:t时刻的变化率正比于t时刻之前d秒时的温度,也就是说,它正比于T(t-d)。这是有道理的:温度在t时刻的变化率取决于你在(t-d)时刻提高(或降低)多少热量,而这显然取决于你当时感觉水有多热或多冷。数字k是比例常数(我们假设它大于0)。
最后,这个负号反映了这样一个事实:(t-d)时刻的高温意味着你会调低温度,从而导致t时刻的温度降低;而(t-d)时刻的低温意味着你会调高温度,从而导致t时刻的温度升高。
求解这个方程意味着找到满足它的函数T(t)。这个函数T(t)会给出任意t时刻的温度。充分了解这个函数后,你就会知道,开关热水龙头究竟是会保持一个舒适的温度,还是会让你一直开下去而得不到一个满意的结果。
由于我们的方程涉及到变化率,也被称为导数,所以这个方程被称为微分方程。这样的方程很少有容易求解的,但我们至少可以探索它的解是什么形式。这需要一点微积分知识。如果你还没有准备好,你可能想要跳到这篇文章的最后一部分,在那里我们将认识到淋浴方程的重要应用。
现在,如前所述,让我们看看淋浴方程的其他应用。最重要的应用是对气候动力学的研究,因为许多气候现象需要时间才能产生影响。
例如,如果我们改变现在排放到大气中的二氧化碳量,那么我们需要等待一段时间,才能看到这对地球温度的实际影响。这使得很难确定二氧化碳减少的影响,并可能导致不受控制的振荡。另一个例子是厄尔尼诺-南方涛动(El Niño Southern Oscillation,ENSO)。这是一种热带地区太平洋温度的不规则变化,升温事件周期大约为4年。厄尔尼诺现象不仅影响它出现的地区,而且对全球经济都有重大影响。
如果我们能更好地预测它,那么这将有助于太平洋地区的国家和地区做好准备。ENSO是由洋流和大气之间的相互作用引起的,它改变了海洋的温度。ENSO可以用一个和淋浴方程非常相像的方程来模拟。在这种情况下,延迟是洋流从南美洲西海岸到亚洲东海岸往返所需要的时间(见上图)。这导致了我们看到的周期性。事实上在这种情况下,方程包含额外的非线性项,这会导致混沌动力学叠加在周期振荡上。
我们的方程同样适用于理解农业对气候变化的反应。这也涉及到延迟,因为作物需要时间生长,这导致很难在变化的环境中规划何时种植和收获作物。淋浴公式也与我们目前因COVID-19而出现的情形非常相关。回顾我们的众多举措,我们通过社交距离和接种疫苗实现了对疫情的有效控制,生产生活已经基本恢复正常。但事实上这些措施需要一段时间才能生效,所以我们再次处理延迟的问题。
此外,COVID-19的病毒潜伏期为5天至2周。在这段潜伏期内,没有明显的症状,所以从一个人被感染到明显生病之间有一段时间,这在模拟疫情时需要考虑。这直接导致了淋浴方程的不同版本,也就是所谓的包含了延迟和控制的SIR方程,可以用来帮助我们理解和控制流行病。就像ENSO系统一样,一旦方程中加入了延迟,事情就变得更加不确定。因此,(卫生和经济)系统的可控制性如何还有待观察。