风引发的共振:赛格大厦晃动背后的物理现象

作者: Mirror

来源: 把科学带回家

发布日期: 2021-06-01

深圳赛格大厦在风平浪静的一天出现明显晃动,引发了对风引发共振现象的关注。文章详细解释了卡门涡街和涡旋脱落等物理现象如何影响高层建筑的稳定性,并介绍了建筑设计师和工程师为减轻风力影响所采取的措施,如安装阻尼器和设计抗风结构。

5月18日,看似风平浪静的一天,深圳赛格大厦却出现明显晃动。这座建成于1999年的大楼已经见识过不少大风大浪,为什么会被不超过5级的风撼动?虽然还未有定论,但目前的主流推测是风引发的共振。是什么“妖风”引发了共振?在我们身边不乏高层建筑,这种效应会不会导致高楼晃塌?毕竟中学我们就学过军队齐步走振塌桥梁的案例——军队行进的频率恰好与桥梁固有频率一致,引发共振,导致桥梁大幅振荡而倒塌。

这是1831年发生在英国布劳顿吊桥上的真实案例。那么楼呢?其实很多超高层建筑中的居民已经对大风天摇摆的高楼习以为常。举最极端的例子——世界第一高楼哈利法塔,828米高的楼顶处晃动幅度可达2米。高处风大,出现较大幅度的晃动不奇怪。但实际上,风要晃动高楼并不需要有多强劲,只要形成一种特殊涡旋效应——涡旋脱落(vortex shedding)就足以使大楼为之颤抖。

涡旋,大家并不陌生,最常见的就是冲马桶时进入下水道的涡旋。而涡旋脱落产生的是一连串涡旋,这些涡旋呈周期性规律排列的现象被称为卡门涡街(Kármán vortex street)。如果你观察过溪流中的石头,会发现有时水流过去后变得有些抖动。空气也会如此。当流体(气流或水流)遇到障碍物时,它们没法从中间穿过去,就会挨着物体两侧绕开。对于机翼那样的流线型物体,流体可以顺滑地“溜”过去,不激起波澜。

但更常见的情况是,障碍物会让流体发生扰动。当绕行流体的惯性力与粘滞力比值(雷诺数)恰好满足一定关系(通常大于90)时,就会在物体下游两侧“脱落”出两列涡旋,而且是一侧顺时针、另一侧逆时针地交替出现。这种涡旋交替分列两道的样子,让人联想到了道路两侧的街灯。又因为物理学家西奥多·冯·卡门(Theodore von Kármán)最先解释了这一现象,故得名“卡门涡街”。

自然界中不乏卡门涡街现象,例如下面这些:云团经过岛屿时形成的卡门涡街,云团流过山体时形成的卡门涡街,你还可以在船只的尾迹中发现卡门涡街。卡门涡街虽好看,但也容易惹祸。当这一系列涡旋从障碍物两侧交替经过时,其两侧的瞬时压力交替改变,大气就会将物体往压力小的一侧来回推。这就好比一大群人蜂拥而至,而你却还站在原地,只能任两侧人潮对你推推搡搡。

光出现卡门涡街还不是破坏力最强的,最怕卡门涡街的频率刚好和障碍物的固有频率一致,发生涡激共振。每个物体都有自己的固有频率,比如拨动粗细不同的吉他弦,它们的振动频率不一样,这也决定了每根弦的音高不同。卡门涡街的频率和流体速度,以及障碍物的迎面宽度有关。流体速度越大、物体迎面宽度越小,卡门涡街频率越大。而建筑物的结构复杂,不同部位的固有频率不同。

当卡门涡街的频率刚好与某一固有频率合拍时,就会发生共振,加剧涡街带来的振动。卡门涡街引发的振动在烟囱、冷却塔、塔楼、管道等高挑的圆柱形物体附近更明显。当它与物体发生共振时可以产生相当大的破坏力。1965年,英国费里布里奇发电站100多米高的冷却塔接连倒塌,正是因为卡门涡街引发共振。为此,一些烟囱、冷却塔顶安装上了螺旋形扇叶,阻碍卡门涡街形成。

不止是卡门涡街,还有大风带来的颤振(aeroelastic fluttering)也会威胁建筑物。最经典的例子是短命的美国塔科马吊桥,1940年才通车4个月的大桥借风势荡了下秋千,啪一下就没了。这个案例过去还被写进了教科书,作为卡门涡街的范例。然而,后来的研究者发现,事故发生时的涡旋频率和吊桥固有频率并不满足共振条件,导致吊桥倒塌的更可能是高风速引发的颤振。

为了避免风给建筑物,尤其是高层建筑带来灾难性破坏,建筑设计师和工程师花了不少心思。减轻振动最常用的方法是安装阻尼器,它的作用相当于汽车上的安全气囊,可以吸收缓冲一部分风或地震带来的振动冲击。台北101大楼在90层左右的位置安装了一个730吨的金色大摆锤,这是一种调谐质量阻尼器(tuned mass damper,TMD)。

每当强风侵袭,楼开始有晃动倾向,液压系统便推动摆锤朝反方向晃动,以抵消部分对楼的振动。很多高层建筑在外形和基本结构上已经重点考虑了风力的影响,即使出现一定幅度晃动也不会坍塌,安装阻尼器更多时候是为了住户的舒适度,以免引起恐慌。例如哈利法塔由数个高度不一的筒状结构组合在一起,不规律的结构扰乱了气流,让它们无法有组织地形成规律涡旋。还有一些大楼很有“绅士风度”地给风让道,在楼体上开洞。

赛格大厦采用的钢管混凝土结构——外层钢管,内层混凝土,理论上也是一种相当稳固的结构。楼体侧方受力时,外侧拉伸得最厉害,那里的钢管耐拉伸,可以抵抗弯折;而内层混凝土不耐拉伸,但垂直方向的抗压能力强,在内部起承重作用。据专家推测,赛格大厦的这次晃动除了可能因为“逛了下卡门涡街”,地铁运行带来的震动和温差剧变导致的钢结构形变,以及抗侧力构件失效等因素,都可能助推了这场波澜。

好在它还不至于造成像金刚大战哥斯拉那样,大楼倾塌的灾难。在修建超高层建筑前,工程师必须充分考虑当地历年来的环境条件,对建筑模型进行风洞实验,确保大楼能挺过至少半个世纪的风雨。尽管有时人算不如天算,也可能不够预算,但安全永远应该放在第一位。

UUID: 77824c51-8218-49d5-a2ae-390f5bd9fbd0

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/果壳公众号-pdf2txt/2021/2021-06-01_风没多大,楼却晃得厉害,可能是这种好看的物理现象在作怪.txt

是否为广告: 否

处理费用: 0.0062 元