亚原子粒子在离散能态之间的转换称为量子跃迁,这是自然界中最基础的物理过程之一。最近的研究表明,跃迁过程虽然十分复杂,但有时是可以被预测的。量子力学这一理论旨于在极微观的角度上描述宇宙中的物理学,其著名的特征是“反常识”。这一理论的标准解释认为量子场内的变化不可预测且是瞬时的。近些年来,由于技术的进步,物理学家能在精密设计的实验设备中,更近一步观察这个过程。
最为基础性的突破或出现在1986年(目前对这一观测仍存在争议),研究人员通过实验首次证实“量子跃迁”是一种能被观测和研究的实验现象。从那时起,科学家借助不断发展的技术,对这种神秘现象进行了更深入的观察。2019年的一项研究显示,量子跃迁的过程可以被预测,且开始后可以被阻断。这一发现颠覆了传统的量子跃迁观念。
研究人员在耶鲁大学实施了这项实验,他们通过一种干扰度最小的装置来监测量子跃迁进程。
每一次跃迁都发生在一个超导量子比特的两个能态之间,这个小循环可用于模拟原子中离散量子能态的超导微环路。研究中的“附加活动”是一种“咔哒”声,是监测设备所捕捉的、由系统散发的光子信号,这表明光子未被系统吸收、跃迁尚未发生。这些测量揭示了一个重要的性质:在“附加活动”中,量子向高能态跃迁之前会有一个停顿。而科学家可以通过这种停顿预测甚至阻止量子跃迁。
近期,一项新的理论研究更深入挖掘了量子跃迁过程,以及它何时会发生。研究显示,这个看上去简单和基础的现象,实际上十分复杂。具体来说,量子跃迁从激发态向基态的回落过程,并不总是平滑和可预测的,这就是作者所描述的“不可捕捉”的组分。研究指出,观测设备与受测系统的“连接度”,对系统跃迁有直接影响。
量子系统的转变通过基态和激发态的混合实现,这称为量子系统的叠加态。然而,在观测设备和系统的联系超过一定阈值时,这种系统叠加态就会趋向某一个能值,并保持相对稳定,直至再次突然回到基态。这意味着,即使我们一开始成功预测了量子跃迁发生,但无法避免会再次“跟丢”系统。而即使在跃迁可预测的期间,也会存在一些差异。
耶鲁大学的研究中也出现了同样的现象。这些研究人员称这些能预测的量子跃迁是“茫茫未知的大海上的小岛”。这项研究发现当光子信号消失的时刻,整个系统会按照预期的途径达到激发态。这一过程十分迅速,但不是瞬时的。这意味着我们的设备仍旧有机会干扰跃迁轨迹。
Zlatko Minev是微软托马斯沃森研究中心的研究员,也是这项耶鲁大学研究的第一作者。他认为,这项研究与先前的耶鲁实验互相参照,显示“相比于我们之前的认识,量子跃迁轨迹的离散性、随机性和可预测性还有待更广阔而充分的研究。”具体而言,耶鲁大学进行的研究首次揭示了量子跃迁的微妙行为——系统从基态到激发态的跃迁能被预测,表明量子世界中部分是可以预测的。
而这一跃迁过程能应用到整个物质世界吗,如预测实验室外的原子?Kumar还不确定,而很大部分原因在于研究条件上的过多限制。Kumar说:“推广这项研究当然很令人兴奋”。如果未来不同的观测设备都得到了类似结果,那么这种量子行为将能解释量子世界的更多基本性质:在量子世界中,事件在某种意义上同时具有随机性和可预测性、离散性和连续性。
与此同时,这项研究的成果或许很快就能得到进一步验证。据魏茨曼研究所的Serge Rosenblum(并未参与上述的研究)说,这些效应能通过目前最先进的超导量子系统观测,而魏茨曼研究所的量子比特实验室正积极推进相关实验。“我很惊讶,像量子比特这样简单的系统竟然能给予我们如此之多的惊喜。”Rosenblum补充道。
量子跃迁是自然界中最基本、最原始的物理问题,但一直很难被真正观测到。直到最新的科技进展扭转了这一局势。华盛顿大学的助理教授Kater Murch(未参加其中上述的研究)表示:“耶鲁大学的实验启发了这项理论研究,为解决这个数十年的物理难题打开了全新的局面。在我心目中,实验与理论的相辅相成,最终转变我们这些理论物理学家对世界的认知,为日后的新发现奠定了基础。”
然而这个量子物理学的难题,并不会立刻消散。正如Snizhko所说:“我并不认为量子跃迁会在短期内得到完美解释,毕竟它是量子理论中的一个基本问题。然而,在不懈的研究和尝试中,我们或可以做出一些具有实际意义的发现。”