在上世纪60年代,物理学家成功创造出了一种自然界没有的神奇光源,那便是激光。可以说,这一发明彻底改变了历史的进程。在20世纪后半叶,激光成为了研究自然科学、医学和工程技术领域中的问题的重要工具。现如今,每一年激光的市场规模已超过了百亿美元。
激光和传统光源的一个重要区别就在于光束的“相干性”。相干性决定了激光束在执行各种精密任务时的能力,高度的相干性使激光适合应用在高精度器件上,比如在控制量子计算机的组件时,就需要一个特定频率的高度相干光束来长时间地控制大量的量子比特,而未来的量子计算机可能还需要相干性更强的光源。
当物理学家在对激光的相关性进行量化时,需要同时考虑光的粒子性质和波性质。对于一个理想的激光器来说,激光的相干性可被粗略地认为是,以相同的相位被连续发射到一束光束中的光子的数量,这个数字可以比激光本身的光子数量要大得多。一直以来,物理学家一直相信,激光相干性的上限,受限于激光中的光子数量的平方。
然而最近,两项新的研究表明,激光的相干性可能比肖洛和汤斯所认为的要高得多。
在两项突破了肖洛-汤斯极限的研究中,其中一篇论文被发表在近期的《自然-物理》杂志上。在这项研究中,格里菲斯大学的物理学家提出了一种新的模型,他们假设一束由激光器所产生的光束,拥有与理想激光器产生的光束相近的性质,并且它们不受外部其他的相干性干扰。基于这一模型,他们推导出相干性的上限正比于激光中光子数量的四次方,这比肖洛和汤斯所认为的平方要大得多。
与此同时,研究人员还发现,这种激光器在理论上可以利用超导量子位技术和目前最成功的量子计算机中使用的电路来实现。第二项研究是由匹兹堡大学的物理学家完成的,他们的研究结果目前被发表在了预印网站arXiv上,正在等待同行评审。在这项研究中,他们使用了一种略微不同的方法,最终得到了相干性以激光中的光子数量的三次方模式增长的模型。现在,他们正在研究如何用超导装置来制造出这样的激光器。
物理学家认为,这种情况应该不会出现。这也是格里菲斯的物理学家在发表于《自然-物理》杂志上的那篇论文中所证明的一个重要结果。作者在论文中表示,肖洛-汤斯的极限是一个标准量子极限,而与光子数的四次方成正比的相干性,则是一个终极量子极限,或者说是海森堡极限(超越标准方法所能达到的极限,与海森堡的不确定性原理有关),这是量子力学所能允许的最好结果。
物理学家表示,这种理论上的“海森堡极限”激光器,在实际操作中是有可能实现的。而这种最好结果所能带来的,也将不仅仅是激光器在设计和性能上的一场革命,它还将能带来对于“激光是什么”这一根本性问题的重新思考。