近年来,结构化数据的表示学习备受业界关注与热捧,图神经网络成为处理相关工作的有力工具,基于随机游走、矩阵分解的方法在搜索推荐、分子和药物生成等领域有着十分重要的应用。但是,由于许多项目的代码并未开源或者开源代码的风格多种多样,研究者和使用者在使用这些方法的过程中会遇到各种各样的问题,比如实验复现以及如何在自己的数据集上运行模型等。
为此,清华大学知识工程实验室(KEG)联合北京智源人工智能研究院(BAAI)开发了一种基于图深度学习的开源工具包——CogDL(底层架构为 PyTorch,编程语言为 Python)。据 CogDL 开发者介绍,该工具包通过整合多种不同的下游任务,同时搭配合适的评估方式,使得研究者和使用者可以方便、快速地运行出各种基线模型的结果,进而将更多精力投入研发新模型的工作之中。
CogDL 最特别的一点在于它以任务(task)为导向来集成所有算法,将每一个算法分配在一个或多个任务下,从而构建了 “数据处理-模型搭建-模型训练和验证” 一条龙的实现。此外,CogDL 也支持研究者和使用者自定义模型和数据集,并嵌入在 CogDL 的整体框架下,从而帮助他们提高开发效率,同时也包含了当前许多数据集上 SOTA 算法的实现,并且仍然在不断更新。
CogDL 还包括图上的预训练模型 GCC,主要利用图的结构信息来预训练图神经网络,从而使得该网络可以迁移到其他数据集上,来取得较好的节点分类和图分类的效果。
CogDL 研究者希望在现有基础上,继续补充其余的图领域的下游任务,添加更多的数据集,更新每个任务的排行榜;同时增加最前沿的关于预训练的图神经网络模型,支持用户直接使用预训练好的模型来进行相关应用;以及完善 CogDL 的教程和文档,让刚接触图领域的初学者能够快速上手。