每一个科学难题的背后都有一盏点亮的明灯,只不过是这盏明灯被幽闭在不透光的密室里,使得外头的人无从知晓。探索者的努力无非是在厚薄不等的墙上砸开一条裂缝,直到看见里面透出的一线光明。
2020年6月23日,《中国科学:化学》在线发表了题为“Dynamical and Allosteric Regulation of Photoprotection in Light Harvesting Complex II (高等植物光系统II捕光天线蛋白实现光保护功能的动态及变构调控)”一文,一项马拉松式的研究工作终于暂告一段落。
先前和朋友聊起这篇论文探索过程之艰辛、发表过程之坎坷时,朋友极力鼓励我把这段经历写成文字,也许对年轻的研究者有所启迪和借鉴。然而在提笔的时候,脑海中总有一个挥之不去的名字:卞和。《卞和献璧》是一个大家耳熟能详的故事,是中学课文中的一篇文言文,讲述的是卞和献宝的经历。卞和在楚厉王在位的时候,认定自己找到的璞石是一块稀世宝玉,就把它献给厉王。
厉王命玉工看后认为只不过是一块普通的石头,卞和由此落个欺君之罪而失去一条腿。来年卞和不服,又来献宝,结果失去了另一条腿。厉王死后文王继位。新君继位,革故鼎新,于是便派人去找卞和,此时的他已在山中哭泣了三日,泪尽继之以血。文王令玉工剖璞验石,这才有传于后世的和氏璧。尽管卞和的执着为后人所称道,但也引来后人的质疑:(1) 卞和凭什么坚信他捡到的石头就是宝玉?就凭他看到凤凰曾经栖落在这块石头上?
(2) 卞和为什么非要去献宝?(3) 卞和为什么不自己找玉工先剖析璞石,而非要等君王身边的玉工来评判?虽然卞和最后为自己洗净了冤屈,但结果还是让人觉得有些侥幸。在我看来,与其说卞和只是为了献宝,还不如说是在坚守他自己的信念:凤凰非宝石不栖。尽管现在看来这一信念有点可笑,可仔细想来,我们自己这些现代人身上或多或少也能够折射出卞和的影子。
江南的仲夏,田野中墨绿色的水稻在正午的烈日下拔节、扬花、灌浆,直到如金粒般的成熟。辛勤劳作的农人难得有一段清闲的日子,企盼着来日有充足的阳光,好去充孕每一株谷穗。这样的日子,分不出是唐是宋,还是元、明、清。直到西学渐近,科学昌明的年代。
如果时光能够穿越,我一定要去唤醒那位面带饥色的少年:他经常在仲夏的烈日下冲着田野痴痴地发笑,坚信每一株水稻正在烈日下不停地进行光合作用,而光合作用的名词也是不久前刚从他的老师那儿听来的。烈日普照—光合作用—粮食丰收—碗中的白米饭,一幅多么激动人心的画卷,难怪少年被这正午的烈日陶醉了。然而,现代科学研究表明:在自然环境中,太阳光的辐照强度可以在短时间内呈现出十几倍的差异。
植物不仅要在低光照条件下实现高效捕光,并把激发能传递给反应中心进行后续的光能—化学能转换,还要在高光强条件下将过量激发能以热的形式耗散掉,从而切断能量传递通路,避免过量光能造成的辐射损伤,实现光保护功能。也就是说,在仲夏正午的阳光下,水稻还有其他植物是不进行光合作用的,而是忙着自救,避免过量光能对反应中心带来的损伤!
现代科学前沿领域的思想和实验探索工具越来越复杂,分工也越来越细。
顶尖的科研成果很少会出自寒门,大都得益于优良的学术传承和发扬光大。中国科学院植物研究所在植物光合作用生物化学研究领域至少已历经两代人的坚守和努力——汤佩松院士和匡廷云院士。中国科学院生物物理研究所的X射线晶体学研究方向则以人工合成胰岛素的晶体结构解析而扬名于世,这一学派代表人物有梁栋才院士、常文瑞院士、饶子和院士。这两大学派珠联璧合,催生了中国光合膜蛋白原子级分辨率晶体结构解析的学术高地。
匡院士作为第一批国家重点基础研究发展规划项目 (973项目,1998—2002年) “光合作用高效光能转化的机理及其在农业中的应用”的首席科学家,对我国的光合作用基础研究起到了组织和推进作用。
作为该项目的代表性成果,2004年3月18日,常文瑞院士和匡廷云院士领导的团队在Nature上以主题论文的方式发表了“菠菜主要捕光复合物 (LHCII) 2.72 Å分辨率的晶体结构”的学术论,这是国际上第一个用X射线晶体学方法解析的绿色植物捕光复合物高分辨率空间结构。论文发表之前,笔者有幸参加了在香山双清别墅举办的项目结题交流会。因为参加过几次年度工作交流会,对一些课题的进展有大致的了解。
菠菜主要捕光复合物晶体结构解析的工作进展照例由常先生作汇报。先前几次会议对常先生的印象是不苟言笑,作报告有板有眼,喜怒不形于色,当然也给年轻人留下了一种威严的感觉。和往常汇报的风格一样,常先生展示了 LHCII 的针状晶体和收集到的X射线衍射数据。记得上一次汇报的时候,常先生讲到这,底下的听众一阵激动,当大家期待着常先生给出晶体结构的时候,他非常平静地说道:“晶体在X射线的辐照下,崩溃了!
”底下又是一阵惋惜的骚动。这次常先生讲到这儿的时候,大家都有心理准备,大不了晶体又崩溃了!可这次没有,常先生先不紧不慢地给大家展示了 LHCII 具有和20面体病毒一样空间点群的单晶元胞结构,然后才不温不火地展示了 LHCII 原子级分辨率的晶体结构,当时整个会场被镇住了,足足有大约5分钟的时间会场上鸦雀无声,我是第一个从这种震撼中清醒过来的,便带头鼓起掌来。
在持续的掌声中,常先生还是一言不发地站在讲台上,直到匡先生热泪盈眶地拿起了话筒,开始讲述个中的曲折,而我在底下悄悄地按下了快门。会后常先生专门打电话叮嘱我在论文正式发表前,不要外传有关晶体结构的照片。
LHCII 在自然界主要以三聚体的形式存在,可以简化成三个外切的椭圆。其中,蓝色三联小球表示镶嵌在蛋白中的叶绿素 b,相应的红色三联小球为叶绿素 a。
如果用虚线画出两个圆环分别表示内圈和外圈的相互作用色素分子,可以看出,环上的色素分子排列方式与光合细菌捕光天线中排列成圆环状的细菌叶绿素分子有很大的相似性。对于光合细菌环状捕光天线的量子力学研究表明,细菌叶绿素分子通过偶极相互作用,形成电子态相干的离域态,可以向邻近的捕光天线进行无方向限制的高效传能。
2005年初,在与中国科学院化学研究所张建平研究员的讨论中碰撞出了思想火花,受到光合细菌捕光天线分子结构的启发,高等植物三聚体的两个色素环会不会也有这样的功能?内环色素分子可将能量传递给外环,外环色素分子和相邻的LHCII 三聚体之间可进行无方向限制的高效传能。如果温度升高,三聚体可能发生解聚,传能环被拆解,从而阻断传能通道,实现光保护功能。
等温度降低后三聚体结构又可以恢复,如此周而复始,实现高效捕光与光保护之间的可逆切换。
1999年回到中国科学院物理研究所工作,当时尚未申请到百人计划的支持。组里最好的设备是先前三个组合买的一台进口YAG脉冲激光器,大家轮流使用。角落里还有一台用紫色天鹅绒布覆盖着的、由石英杜瓦瓶液氮浸式冷却放电管构成的中红外一氧化碳 (CO) 分子气体激光器。
这是傅克坚研究员 (傅作义先生女儿) 的课题组留下的,闲置在那里应该有5—6年之久,了解这台激光器的人都已经离开了这个实验室。当时在思考如何利用现有的条件开展有意义的研究,而不至于虚度光阴。
碰巧在海淀图书城买到一本由国内多位著名科学家撰写的《21世纪的100个科学难题》,其中有一篇是中国科学院生物物理研究所王志珍院士 (后来有幸与其合作) 写的文章“中心法则的空白——从新生肽到蛋白质”,谈到“蛋白质折叠问题”是科学难题,联想到我在 Emory 大学做博后时认识的乔治亚理工学院 (Georgia Institute of Technology) Mostafa El-sayed 教授的博士生王建平,他当时正在开展利用脉冲升温—纳秒时间分辨中红外光谱研究蛋白质折叠动力学,于是就下决心开展这个方向的研究。
第一件事是如何让CO激光器运转起来,在找不到知情者咨询的情况下,想到去所科技档案室碰碰运气,看看有没有相关的资料存档。没想到,李春芳老师居然从档案室给了我一个厚厚的资料袋,里面不但有研制任务书,还有图纸及仪器验收指标,关键还有这台设备的研制单位大连理工大学的联系人和电话。凭借这个电话号码,找到了大连理工大学的于清旭教授,从此开展了后来持续多年的CO激光器升级换代工作。
2001年开始连续三年向自然科学基金委员会递交应用脉冲升温—时间分辨中红外激光光谱研究蛋白质动态结构的申请,直到第三次申请才终于获得了面上基金的资助。多年后才知道,项目进入会评阶段多亏了当时只有一面之缘的大连化学物理研究所李灿院士的支持。
期间在于老师的指导下,学会了CO激光器的出光调试,但是这台老激光器一旦连续运行起来,问题便层出不穷,不是变压器被烧坏,就是大电容被击穿,而且激光稳定性差,就连真空橡胶抽气管用几回也会穿孔破裂,如此等等,不一而足。记得那年冬天,几乎十个指头都缠着胶布。
有一次无意中看到一篇资料讲到臭氧对人体皮肤的损害,联想CO激光器放电后石英管中会残存大量蓝色的液态臭氧,不仅腐蚀人的皮肤,肯定也会腐蚀真空橡胶管,由此一举解决了手指皲裂和真空橡胶管被腐蚀的问题。
脉冲升温—纳秒时间分辨红外光谱研究蛋白质动态结构的原理是,红外光谱能够识别蛋白质的二级结构,如α-螺旋、β-折叠、无规卷曲、环折结构及分子间氢键等。
而激光脉冲升温方法可以给蛋白质一个快速的扰动,一般由脉宽为10 ns的脉冲激光激发水或氘代水的泛频吸收,可在20 ns时间内引起体系约20 ℃的温升,比传统的反应停留法测定蛋白质折叠动力学的时间分辨率高出几个数量级。然而常规的掺钕YAG激光器1.064 μm的基频输出无法直接用作加热脉冲,必须经过一个以高压氢气为介质的拉曼频移器,将基频红移到2 μm左右。
拉曼频移器看起来很简单,在一段不锈钢管的两端分别安装上石英窗口。但要保证其在几十个大气压下安全工作,谁也没有把握。2002年访问日本东京大学的一个光谱实验室,听说一个充有80个大气压的拉曼频移器出了事故,石英窗片被高压气体推出,在对面的墙上砸出了一个大洞,幸亏没有伤着人。尽管有风险,还是想由自己设计加工,并就此事请教许祖彦院士。
许先生告诉我们,清华大学的娄彩云教授做过拉曼频移器用以产生通讯波段的激光 (1.54 μm,用甲烷做介质)。就这样从娄老师那里拿到了拉曼频移器,额定安全工作气压为20个大气压。实验中激光转换效率太低,王莉同学 (北京理工大学联合培养的研究生) 把气体池加长,又在娄老师的指导下提心吊胆地把气压一点点提高到30个大气压,总算满足了实验要求。
这时张庆利同学也把CO稳定性提高到了较为满意的水平,与加热脉冲激光联用后,实现了探测光吸收变化率 (ΔOD) 测量精度为10-3的基本要求。当时经费缺乏,连王莉的工资都开不出来了,于是硬着头皮去找杨国桢院士帮我想想办法,以解燃眉之急。没想到杨先生听完我说的困难后,爽快地把他当年的院士个人支配的创新经费(3万元)转给了我。
美国明尼苏达大学化学系和超算中心的高加力教授是分子动力学模拟研究的专家,是分子动力学模拟的鼻祖、诺贝尔化学奖得主哈佛大学Martin Karplus教授的高足。我和他在2015年基金委物理化学处重点项目答辩会上初次见面,高老师来做申请答辩,他与吉林大学理论化学研究所开展合作研究工作,我是当时的评审专家。
那年评审会印象深刻,年轻学者如复旦大学的刘志攀教授等胜出,而两员老将高老师还有中国科学技术大学的严以京教授则铩羽而归。第二年高老师继续参加答辩,项目是应用分子动力学模拟的方法计算蛋白质二级结构的红外光谱,精度达到 1 cm-1。这样的申请报告对我而言不啻是高山流水之音。一激动,就做了一番即席发言。
高老师那年终于拿到了项目,也许就是因为这一番发言,他便知道了国内有位运用红外光谱解析蛋白质二级结构的翁羽翔。那年9月份,高老师和他的同事李辉教授突然造访中国科学院物理研究所,就在物理所“总理咖啡屋”一叙。寒暄过后,就切入正题,我非常希望能够和这样的高人开展合作,于是就在咖啡屋的电子屏幕上给高老师介绍起了高等植物捕光天线的非光化学淬灭和我们的LHCII三聚体动态聚合/解聚调控的想法和研究进展。
对于科学探索,思想是自由的,而行动则会受到各种条件和规则的牵制,而从事自由探索的这个群体,宛如一群戴着脚链的舞者,在有限的空间中展现出无限的美丽。记得张殿琳院士有一次在物理所春季年度学术交流大会上就学术考核问题,引用了白居易的诗句:赠君一法决狐疑,不用钻龟与祝蓍。试玉要烧三日满,辨材须待七年期。周公恐惧流言日,王莽谦恭未篡时。向使当初身便死,一生真伪复谁知?张先生重点强调了“三日满”和“七年期”。
对于崎岖路上的探索者,也许这也是一种回答 (摘自汪国真《热爱生命》):我不去想是否能够成功,既然选择了远方,便只顾风雨兼程。然而现实是,只有成功,才有话语权。“publish or perish (要么发表,要么走人)”流传已不止一天了,天下苦秦久已!