30年后咋赚钱?年产值8万亿的清洁能源产业考虑一下

作者: 圆的方块

来源: 果壳

发布日期: 2020-09-13

本文探讨了未来30年清洁能源产业的发展前景,特别是氢能产业,预计到2050年,中国氢气需求量将达到6000万吨,年经济产值12万亿元。文章详细介绍了氢能的优势、制氢方法、电解水制氢的催化剂技术,特别是单原子催化剂的研究进展,展示了氢能产业的巨大潜力和未来发展方向。

30年后,它可能价值8万亿——根据中国氢能联盟预计,到2050年,中国氢气需求量将达到6000万吨,年经济产值12万亿元,而这其中,70%将依靠电解制氢。

人类文明诞生至今,从木头到煤炭,从石油到天然气,碳元素的燃烧贡献了大部分能量。作为碳基能源,石油与煤炭都属不可再生能源。碳基能源是整个世界的基础,这句话一点都不为过。然而,它所带来的问题也同样突出。碳燃烧放出的二氧化碳,制造了温室效应和一系列极端气候变化。绝大部分碳基能量,都属于不可再生资源,从某种意义上说,单纯依赖碳基能源,就是在透支人类和整个地球的未来。

但人类还有自我拯救的方法——被誉为下一场工业革命的能源革命3.0,而这场新能源革命的主角,是氢。氢能,一直被认为是一种终极能源,氢气相比于其他燃料其燃烧产物最清洁,基本只产生无污染的水,而且燃烧产生的水又可以继续制氢,反复利用。其次,氢气燃烧的比能量高,除核燃料以外氢气的发热值是所有燃料中最高的,是汽油发热值的3倍。

再者,它“轻如鸿毛”,作为我们了解到的最轻的物质,即使是加压液化后的液态氢,密度也不及钢铁的1/10,这种低密度的性质使得它可以减轻燃料自重,增大运输工具的有效载荷量,从而有效降低运输成本。

氢能的利用,将让人类告别碳基能源。2000年,氢的生产成本是石油的40倍,到2010年,这一比例已降至15倍,如今其成本约为石油成本的两倍,盈亏平衡在望。也许在有生之年,我们能见到一个全新的时代——无碳的“氢能时代”。

那么,问题来了,氢气从哪来?自然界中现成的氢气十分稀少。在空气中,氢气只占总体积的千万分之五。所以,我们要想办法把其他物质中的氢元素提取出来,制成氢气。目前,工业化制氢的方法有三条路线,分别叫做“灰氢”“蓝氢”和“绿氢”。

“灰氢”路线是将化石燃料裂解,从中获得氢气。比如,将煤在隔绝空气的条件下加热,能得到焦炭,这一过程会产生焦炉煤气,其中就含有大量的氢气。不过,“灰氢”路线的产物中不可避免地伴生着一氧化碳、二氧化碳。“蓝氢”是“灰氢”的改良版,配合了碳捕捉技术,可以减少二氧化碳排放,但是成本也要高些。“绿氢”是指用太阳能、风能这类可再生能源发电,再来电解水制氢。

目前,因为成本的关系,“灰氢”的产量占了氢能的绝大部分。我国作为世界第一产氢大国,单单2017年,氢气产量就超过2000万吨,这其中化石燃料裂解产氢占了近70%,电解水只有不到1%。无论“灰氢”还是“蓝氢”,都没有从根本上解决碳排放的问题,所以电解制氢的“绿氢”才是氢能的未来。

于是,我们又要回到本文开头时的公式,怎么电解水?拜托了,催化剂!对于电解水,原理不是问题,操作起来也简单。

在水中加些电解质,插进两个电极,加上电压。一切顺利的话,阴极生成氢气, 阳极生成氧气。但一切不会太顺利。水的理论分解电压在1.23V,然而这仅仅是理论上的。实际操作中,水中的物理化学环境会偏离理想状态,需要施加的电压往往超过1.23V,而这超过的部分被称为“过电位”(overpotential)。我们希望这个过电位越小越好,过电位越小,电解水需要的电能越少。

此时,催化剂该登场了。

催化剂能降低反应过程中的阻力,把过电位降下来。那什么样的催化剂是好催化剂呢?为了回答这个问题,我们还要再仔细琢磨一下电解水的过程。氢气的产生其实是分两步的:首先是吸附过程,水中的氢离子吸附到催化剂表面,发生反应;之后再发生脱附,生成的氢气脱离催化剂表面。整个过程中,如果氢与催化剂表面结合太弱,吸附步骤不容易发生,会拖慢反应进程;而如果结合太强,脱离步骤就要克服更大的阻碍,花费更多时间。

因此,最好的催化剂对氢的吸附能力应该不强不弱。

而在众多元素中,对氢的吸附能力恰好处于中间状态的就是——铂(Pt)。铂的催化性能虽然好,但是缺点也显而易见——太贵了。这种贵金属元素,全世界每年的产量只有不到200吨,当前的价格大概350元一克。虽然氢能事关重大,但高昂的价格足以让人们望而却步。科学家们就想找找有没有便宜点的替代品。几十年来,他们测试了各种元素、各种组合对产氢的催化能力。

从非贵金属单质铁、钴、镍、铜、钼、钨,再到它们的化合物,氧化物、硫化物、磷化物、硒化物。

在几乎遍历了所有排列组合后,倒也确实发现几种不错的替代品。但为了达到与铂接近的催化能力,这些候选材料要提高用量,或者经过复杂的处理,这样一套操作下来,成本其实也没便宜多少。有些学者甚至开始尝试,在排列组合的基础上再排列组合,也就是将多种催化剂材料相结合,想实现1+1>2的效果,想来又是一大波海量的工作。当然,我们还有另一条路可走——就是尽量提升铂的利用率。

只要一个原子催化过程发生在催化剂的表面。

在传统铂催化剂中,表层的铂原子忙着吸附脱附,不亦乐乎,但内层的铂却无所事事,所以我们要想办法让更多的原子出工出力。最简单的办法就是降低催化剂尺寸。一个边长为2的立方体和八个边长为1的立方体,体积相等,但后者表面积加起来是前者的2倍。通过降低尺寸,可以极大提升表面积。如果能不断降低铂的尺寸,就可以暴露出更多表面,让更多原子参与到催化过程中。简而言之,就是提高铂的原子利用率。

最近几十年,纳米技术日新月异,已经有了成熟的方法把物质做到几个纳米的尺度。目前,在最常用的商用催化剂中,铂颗粒的尺寸就是3~5nm。但这还不够。在小的这条路上,我们还可以走得更远。“小”的终点是——单个原子。将材料的尺寸降到原子级别,理论上能把原子利用率提高到100%。理论中的设想越美好,实际做起来的挑战越巨大。怎么得到单原子?怎么保持单原子的稳定存在?即使做出了单原子,它的催化能力又如何?

在相当长的时间里,这些问题一直困扰着科学家们。

直到2011年,我国的张涛院士团队首次报道了“单原子催化剂”的成功制备。他们通过一种名为“共沉淀”的方法将铂单原子分散在氧化铁载体中。铂与载体间的相互作用能够让单原子稳定存在,并且能表现出优异的催化性能。中国人证明了 “单原子催化剂”的路子是走得通的。经过近10年的发展,我们也在不断开发新的方法,做出更稳定,效果更好的催化剂。

比如,2020年中国科学技术大学的学者,通过原子层沉积技术将铂单原子固定在一种碳骨架中,仅用了2.5%质量含量的铂元素,就实现了超过商用样品(铂含量为20%)的产氢能力。

当然,不只是产氢,工业上很多反应都需要催化剂的参与。人们也在尝试将各种催化剂降到原子尺度:单原子铅(Pd)来加速乙烯氢化反应,单原子金(Au)来促进一氧化碳选择性氧化反应等等。

现如今,单原子催化剂已经成为了最激动人心的科研领域之一。人类社会进步的标志之一,就是我们在越来越小的尺度上发挥材料的价值。从远古祖先“厘米级”的打磨石头,到工业革命“毫米级”的车床加工,再到当下“纳米级”的芯片制造。而“原子级”的生产领域,很可能率先被单原子催化剂所照亮。有了这些高性能的单原子催化剂,我们也许能更早地走入到那个“氢能时代”。几十年后,上万亿的生意,没准要落到这一个个原子的头上。

UUID: f476af1f-3e5b-4a90-8076-bbd4d82fc4dd

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/果壳公众号-pdf2txt/2020/2020-09-13_30年后咋赚钱?年产值8万亿的清洁能源产业考虑一下.txt

是否为广告: 否

处理费用: 0.0076 元