20年磨一剑:纳米技术完全测序人类X染色体

作者: 陈抒宁

来源: 《自然》杂志

发布日期: 2020-07-24

美国加利福尼亚大学圣克鲁兹分校的Karen Miga教授团队使用最新的纳米孔测序技术,首次完成了从端粒到端粒、完整无缺的人类X染色体序列。这标志着人类基因组测序技术取得了重大突破,为未来完成整个基因组的测序奠定了基础。

人类基因组计划启动于1990年,如今已匆匆过去30年光景。从2000年人类基因组草图宣告完成后的二十年间,人类参考基因组不断更新迭代。即便如此,其中依然存在数以百计的空缺,尚无一条染色体被真正完成[1]。如今,科学家首次完成了一条“从头到尾”真正完整的人类染色体测序。7月14日,《自然》杂志上刊载了美国加利福尼亚大学圣克鲁兹分校的Karen Miga教授团队的研究成果[2]。

该团队使用最新的纳米孔测序技术,首次完成了从端粒到端粒、完整无缺的人类X染色体序列。这或许意味着,真正完成人类基因组测序的时代已经触手可及。

过去,人类基因组计划使用的测序方法只能用来测定较短的DNA序列,长度在100到1000个碱基对间。因此,较长的序列被剪切成末端重复的碎片,并依靠这些重复的部分将碎片重新组装成完整的序列。这种测序方法也被形象地称为“霰弹枪测序法”。

这种方法重建基因组的最大挑战在于如何区分重复的序列[3]。人类基因中有大量重复的序列,这使得测定出来的许多短链几乎一模一样,既难以拼接,也难以判断到底存在多少个重复区段。就像拼图中我们往往把天空或湖水的部分留到最后,因为在大片的同色色块里,我们便难以确认具体某块拼图的位置一样。

现在参考基因组中的空缺包括核糖体DNA序列,着丝粒(在细胞分裂时连接两条染色体单体的部位,它们将染色体分为长臂和短臂)中高度重复的DNA序列,此外,还有一些富含重复片段的区域,这些重复片段动辄有超过数十万碱基对,重复率超过98%[2]。“目前基因组图谱上缺失的部分,也恰是在人群中序列变异最多的部分,也因此为基因生物学和人类疾病的研究提供了未经探索的序列。

完整的基因组图谱有潜力加深我们对遗传疾病的了解。而我们选择X染色体的研究正是因为它和无数的疾病有关,其中包括血友病,慢性肉芽肿性疾病和杜氏肌营养不良。”Miga教授告诉《知识分子》。

要应对黑暗区域的挑战有两种途径:要么测的序列长到可以覆盖一整个重复部分;要么测序足够精确,可以通过区分独特的变量来区分重复的序列[4]。最新的纳米孔测序技术为超长测序提供了可能。

在实验中,研究人员让DNA链通过一个嵌在电阻膜上的纳米孔,就像行李通过X光安检仪一样,“扫描”出DNA上的碱基序列。在测序时,电阻膜被浸入电解质溶液中,并让离子电流通过纳米孔,当DNA链上不同的碱基通过纳米孔时,会对这个电流产生干扰。通过解码这些电流信号,研究人员就可以测得特定的DNA或RNA片段。

Miga教授和她的团队完成的X染色体序列完整无缺,且估算有至少99.99%的准确率,这意味着平均每1万碱基对才有一个错误。在对X染色体的研究中,Miga教授和她的团队重建了约2.8兆碱基对的着丝粒中的DNA序列,并且填补了X染色体所剩的29个空缺部分,包括拟常染色体区域和CT抗原基因家族中的新序列,CT抗原基因家族是一种肿瘤特异性抗原,有望用作癌症的免疫治疗[2]。

加利福尼亚大学圣克鲁兹分校的助理研究科学家Jain Miten告诉《知识分子》,“端粒到端粒的完整染色体测序是基因组学里程碑式的时刻,而超长测序的技术和算法的发展是使之得以实现的主要因素之一。了解这些曾是未知的‘黑暗区域’的序列结构和表观基因序列图谱,会为生物学带来新的视角。同时,这也是一个分阶段的,端粒到端粒的,完整基因组时代到来的界标。”

接下来,Miga教授和她的团队将继续致力于从人类基因组剩余的“处女地”上捕捉新的序列和表观基因的变异。Miga教授表示:“我们目前已经有了巨大的进展,并且希望可以在不远的未来和公众分享。我们发现有一些特定的染色体比其他的更容易组装(比如8号和6号)。最难的染色体是带着几乎相同的核糖体DNA序列的近端着丝粒染色体如13、14、15、21和22号。

同时我们也需要开发新的技术来面对1号、9号和16号染色体上大型人类卫星DNA序列的挑战。”

UUID: 5d0d6a58-a3ad-4588-a0fd-f9fd11e632d6

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/知识分子公众号-pdf2txt/2020年/2020-07-24_20年磨一剑:纳米技术完全测序人类X染色体.txt

是否为广告: 否

处理费用: 0.0050 元