知识图谱推理框架:基于向量空间的推理和数值逻辑推理

作者: Unicorn

来源: 学术头条

发布日期: 2020-05-06

本文解读了两篇关于知识图谱推理框架的论文,一篇基于向量嵌入技术,另一篇基于Neural Logic Programming框架并拓展了数值推理逻辑。

知识图谱作为人类知识的载体,蕴含着丰富的语义知识,因此支撑着许多上游的应用,例如问答,推荐等。基于知识图谱的推理作为知识图谱问答的基础,也是有着不同的解决框架。本文解读了两篇不同框架的论文:一篇是基于知识图谱的向量嵌入技术,完全基于向量操作进行推理演算;另一篇是基于Neural Logic Programming框架,并进一步解决了数值推理的问题。

随着知识图谱向量嵌入的技术发展,衍生出了另一种基于向量的知识图谱推理方法,与之前的Neural-LP(Neural Logic Programming)类似的推理框架不同,这一推理框架将问题和实体都表示成低维向量,随后通过向量计算实体与问题的相似度,从而选取相似度较高的实体作为问题的答案实体。

然而,之前的方法都是把问题表示为单个向量,但较为复杂的问题可能具有多个答案实体,所以将这种复杂问题表示成语义单一的单个向量明显是不合理的。本文提出了一种Box Embedding的思想,将问题表示成向量空间中的具有一定空间范围的box,这样的query box中就可以自然的包括所有答案实体,充分表示了复杂问题的语义信息。

先前的基于Neural-LP(Neural Logic Programming)框架的模型一般只能在由<实体,关系,实体>组成的知识图谱结构谓词上进行推理,而不能解决涉及到实体属性数值方面的问题,例如“比A年长的人是谁?”本文是在Neural-LP框架上进行了拓展,加入了数值推理的逻辑,解决了数值比较,属性聚合以及求反等三个方面的推理。

UUID: 8cb662b7-0287-43f0-92ff-7561924db711

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/学术头条公众号-pdf2txt/学术头条2020年-上/2020-05-06_ICLR2020知识图谱推理框架:基于向量空间的推理和数值逻辑推理.txt

是否为广告: 否

处理费用: 0.0032 元