自1742年提出至今,哥德巴赫猜想(Goldbach’s conjecture)已经困扰数学界长达三个世纪之久。作为数论领域存在时间最久的未解难题之一,哥德巴赫猜想俨然成为一面旗帜,激励着无数数学家向着真理的彼岸前行。对不少人来说,知道哥德巴赫猜想,离不开两个人,陈景润和徐迟。后者那篇著名的报告文学,让很多人知道了有位中国数学家,用了几大麻袋演算纸,将哥德巴赫猜想的证明往前推进了一步。
但陈景润究竟在这个领域取得了多大的进展呢?让我们从哥德巴赫猜想本身说起。
源起:素数引发的悬案
一个大于1的自然数,如果除了1与其自身外,无法被其他自然数整除,那么称这个自然数为素数(又称质数);大于1的自然数若不是素数,则称之为合数。今天故事的发端,就是这类被称为“素数”的数字。早在古埃及时代,人们似乎就已经意识到了素数的存在[1]。而古希腊的数学家们很早就已经开始对素数进行系统化的研究。
例如欧几里得在《几何原本》中就已经证明了无限多个素数的存在[2]以及算术基本定理(即正整数的唯一分解定理,指出任何大于1的自然数都可以唯一地写成若干个质数的乘积)[3]。而埃拉托斯特尼提出的筛法则为找出一定范围内所有的素数提供了可行的思路[4]。
随着对素数理解的深入,素数的诸多奇特性质被人们发掘出来。1742年6月7日,普鲁士数学家克里斯蒂安·哥德巴赫在写给瑞士数学家莱昂哈德·欧拉的信中,提到了自己有关素数的一个发现:任一大于2的整数都可以写成三个质数之和。值得一提的是,当时欧洲数学界约定1也是素数。所以换成现代的数学语言,即“任一大于5的整数都可写成三个质数之和”。
沉寂:难以逾越的高山
“哥德巴赫猜想的困难程度可以与任何一个已知的数学难题相比。——戈弗雷·哈罗德·哈代”
哥德巴赫猜想一直以来都深受业余数学爱好者的青睐,一个很重要的原因就是其表述十分简洁易懂。然而猜想的证明实际上是极为困难的。自1742年猜想被正式提出后的160余年里,数学家苦苦探寻,都没有取得任何实质性的进展,更多的只是提出一些等价的命题,或者是对猜想进行数值验证。
突破:划破夜空的曙光
“数学是科学中的皇后,而数论是数学中的皇后。——卡尔·弗雷德里希·高斯”
问题真正的实质性进展出现在二十世纪20年代。当时出现了两种代表性的思路,一种是英国数学家哈代与李特尔伍德在1923年论文中使用的“哈代-李特尔伍德圆法”[6],另一种是挪威数学家布朗(Viggo Brun)使用的“布朗筛法”[7,8]。
冲刺:鼓舞人心的号角
“陈景润的每一项工作,都好像是在喜马拉雅山山巅上行走。——安德烈·韦伊”
上文提到的两种思路都在二十世纪都得到了极大的发展。这也极大地推动了哥德巴赫猜想和弱哥德巴赫猜想的证明工作。1937年苏联数学家维诺格拉多夫(Ivan Vinogradov)在对于弱哥德巴赫猜想研究中取得了重大的突破[10]。
他在圆法的基础上,去掉了哈代和李特尔伍德证明中对于广义黎曼猜想的依赖,完全证明了“充分大的奇素数都能写成三个素数的和”,即“哥德巴赫-维诺格拉多夫定理”。不过维诺格拉多夫无法给出“充分大”的下限,所以找到这一下限便成为了弱哥德巴赫猜想研究的主要方向。
2013年秘鲁数学家哈洛德·贺欧夫各特(Harald Andrés Helfgott)成功将维诺格拉多夫“充分大”的下限缩小至10的29次方左右,通过计算机验证在此之下的所有奇数,结果无一例外都符合猜想,从而最终完成了弱哥德巴赫猜想的证明[11]。
相比较而言,强哥德巴赫猜想的研究困难相对更大。不过二十世纪上半叶以来,数学家遵照布朗筛法的研究思路,也取得了长足的进展。
在布朗证明“9+9”后不久,1924年德裔美籍数学家拉德马赫(Hans Adolph Rademacher)成功证明了“7+7”[12],1932年德国数学家埃斯特曼(Theodor Estermann)证明了“6+6”[13],苏联数学家布赫希塔布(Alexander. A. Buchstab)于1938年和1940年证明了分别证明了“5+5”与“4+4”[10]。
而使用筛法的最好结果是由我国数学家陈景润得到的。1966年,陈景润在《科学通报》上发表了有关“1+2”的证明,即“任何一个充分大的偶数都可以表示成两个素数的和或者一个素数及一个2次殆素数的和”[17]。换言之,对于任给一个大偶数N,总可以找到奇素数p',p''或p1,p2,p3,使得1973年,陈景润给出了“1+2”的详细证明,同时改进了1966年研究的数值结果。
是年4月,中国科学院主办的《中国科学》上,公开发表了陈景润的论文《大偶数表为一个素数及一个不超过两个素数的乘积之和》[18]。在这一证明中,陈景润对筛法作出了重大的改进,提出了一种新的加权筛法。因此“1+2”也被称为陈氏定理。
展望:未完待续的旅行
数学家与画家和诗人一样,是模式的创造者。——戈弗雷·哈罗德·哈代
近年来,数论这一学科的研究中心似乎也在慢慢转移,哥德巴赫猜想的研究热度相对上个世纪中叶也有所下降。不过数学家对于以哥德巴赫猜想为代表的素数相关问题的研究从来没有停止。比较著名的有前面提到的黎曼猜想以及孪生素数猜想。
黎曼猜想
黎曼猜想由德国数学家黎曼于1859年提出的,有“猜想界皇冠”之称。猜想表述为:对于黎曼ζ函数非平凡零点(即s不等于-2、-4、-6等)的实数部分是1/2。
孪生素数猜想
孪生素数猜想的表述十分简洁:存在无穷多个素数p,使得p + 2是素数。但其证明却并不容易。最新的进展是,华裔数学家张益唐证明存在无穷多个素数对相差都小于7000万,即尽管这与原命题“存在无穷多个素数对相差都等于2”貌似还有很大的距离,但张益唐的研究实则跨越了孪生素数猜想中最大的鸿沟,即实现了从“无穷”到“有限”的飞跃,从而使得问题的研究有了实质性的进展。
著名数学家陶哲轩通过Polymath计划,通过网上的志愿者合作计算,降低张益唐论文中的素数差的上限[20]。截至张益唐提交证明之后一年,该上限已降至246。