当地时间2月20日,麻省理工学院(MIT)在国际顶尖学术期刊《细胞》杂志刊登了一篇突破性的研究成果,并登上了当期杂志封面。研究人员利用人工智能深度学习系统,发现了一种强大的新型抗生素化合物。在实验室测试中,这种药物杀死了世界上许多非常棘手的致病细菌,包括一些对所有已知抗生素都有耐药性的菌株。并且在动物实验中,它还有效清除了两种不同小鼠模型的细菌感染。
研究人员通过计算机深度学习系统建立的模型,可以在几天内筛选超过1亿个化合物,从而挑选出不同于现有药物杀死细菌机制的潜在抗生素。除了发现全新可针对多种超级耐药菌的抗生素外,研究人员还发现了其他几种有前途的候选抗生素,他们计划进一步测试。研究人员相信这个模型也可以用来设计新药,基于他们对化学结构的了解,使药物能够杀死细菌。
传统的筛选新抗生素的方法成本高昂,不仅需要大量的时间投入,而且通常局限于化学多样性的狭窄范围。在过去的几十年里,很少有新的抗生素被开发出来,而且大多数新批准的抗生素是现有药物的稍微不同的变体。研究人员设计了寻找使分子有效杀死大肠杆菌的化学特征的全新模型。为了做到这一点,他们对模型进行了约2500个分子的训练,包括约1700种FDA已经批准的药物和800种不同结构和具有广泛生物活性的天然产物。
最终,该模型挑选出一种被预测具有强大抗菌活性的分子,其化学结构与现有的任何抗生素都不同。研究人员还通过另一种机器学习模型发现,这种分子可能对人体细胞有低毒性。根据《2001太空漫游》中虚构的人工智能系统,研究人员决定将这种分子命名为Halicin。之后,研究人员对从病人身上分离出来的几十种菌株进行了测试。
通过实验室培养皿中的培养,研究人员发现该潜在药物能够杀死许多对治疗产生抗药性的细菌,包括艰难梭菌、鲍曼不动杆菌和结核分枝杆菌。为了在活体动物身上测试halicin的有效性,研究人员用它来治疗感染了鲍曼尼氏杆菌的老鼠,这种细菌此前已经感染了许多驻扎在伊拉克和阿富汗的美军士兵,而且鲍曼尼氏杆菌对所有已知的抗生素都有耐药性,但使用halicin的治疗后,细菌感染在24小时内完全消失。
进一步研究表明,新药halicin通过破坏细菌在细胞膜上维持电化学梯度的能力来杀死细菌。其中,电化学梯度是产生ATP(细胞用来储存能量的分子)所必需的,所以如果梯度被打破,细胞就会死亡。研究人员们也提到,重塑电化学梯度的过程非常复杂,不是简单的几个突变就能完成的,因此这也最大程度上杜绝了耐药性的产生。此外,在这项研究中研究人员还发现,在30天的治疗期间,大肠杆菌没有产生任何抗药性。
相比之下,细菌在1-3天内开始对抗生素环丙沙星产生耐药性,30天后,细菌对环丙沙星的耐药性是实验开始时的200倍左右。研究人员还计划与制药公司或非营利组织合作,对Halicin进行进一步研究,以期开发出用于人类的药物。在确定了Halicin之后,研究人员还使用他们的模型在ZINC15数据库中筛选了1亿多个分子。
这一筛选仅用了三天时间,就确定了23种候选抗生素药物,它们在结构上与现有抗生素都不同,而且对人体细胞无毒。在对五种细菌的实验室测试中,研究人员发现其中八种候选抗生素分子显示出抗菌活性,其中两种特别强。研究人员现在计划进一步测试这些分子,同时筛选更多的ZINC15数据库里的化合物。研究人员还计划利用他们的模型设计全新的抗生素,并优化现有的分子。
例如,他们可以训练模型增加一些特性,使特定的抗生素只针对特定的细菌,防止它杀死病人消化道中的有益细菌。