如果你喜欢在早餐时来上一碗牛奶泡谷物圈,你可能会发现,谷物圈并不会均匀地分布在牛奶表面,而是会聚在一起,或是贴着碗边分布。不爱吃谷物圈也没关系,喝可乐或其他碳酸饮料时,你也可能注意过类似的现象:汽水表面的泡沫或是聚成一团,或是贴着杯壁,总之很少有零星的小泡泡独自游荡。其实,不止是谷物圈和泡沫这种密度比水小的物体,那些密度比水大的物体也能产生类似的现象。
比如,若你让几枚图钉或曲别针漂在水面,它们靠近时也会相互吸引。但当一枚图钉与一粒谷物圈相遇,则会相互排斥。这个最早发现于早餐中的现象引起了物理学家的注意,它也因此拥有一个很“好吃”的名称:“谷物圈效应”(Cheerios Effect)。
“谷物圈效应”早在70年前就被发现并引发过讨论,但直到2005年,哈佛大学的科学家才首次对该现象进行了详细解释和模型计算。
相关论文发表于《美国物理杂志》,其作者之一L. Mahadevan热衷于用物理原理解释日常生活中的现象,比如观察油漆干燥的过程、纸片下落的过程,以及研究折纸中的结构力学和墨水中的流体力学等。根据论文的解释,“谷物圈效应”源于表面张力和毛细现象带来的液面变形。当能够产生液面变形的两个物体靠近时,由于系统的重力势能和表面能倾向于最低,物体之间就会互相吸引或排斥。
将固体放在液体表面会产生谷物圈效应,那么反过来又会如何呢?研究发现,液滴落到固体表面时也能产生类似的效应,只要固体表面足够柔软即可。这项研究于2016年发表于《美国科学院院报》。研究发现,通过改变固体表面的柔软程度,就能控制液滴的分布方式。在厚度不同的弹性表面,水滴体现出了吸引(左)和排斥(右)两种不同的相互作用。
“谷物圈效应”已经发现了许多年,但过去关于谷物圈间力的大小都只有理论计算,缺乏实际测量结果的验证。最近,布朗大学的一个研究小组找到了一种方法,可以直接测量这种力的大小。研究发现,谷物圈间的相互作用力比此前模型预测的要大。这可能是因为两个碟片靠近时会发生倾斜,这种倾斜导致液面对碟片的压力更大,因此碟片间的吸引力便会有所增加。
其实,物理学领域中有许多与早餐食物有关的效应和理论。
比如人们发现,一袋坚果经过摇晃后,最大颗的坚果总是会留在最上层。考虑到这种大颗坚果通常是巴西果,这个效应也被称为“巴西果效应”(Brazil Nut Effect)。另一个有名的早餐物理理论就是“咖啡环效应”(Coffee Ring Effect),这个名字的来历是滴落的咖啡干燥后会在液滴边缘形成一圈深色的圆环。
这些故事告诉我们一个道理,不吃早餐不仅可能不利于健康,还不利于搞好科研——尤其当你是物理专业时。