1757年,数学家欧拉(Leonhard Euler)发现了后来被称为“欧拉方程”的流体方程,这些方程描述了流体随时间的演化,就像牛顿的力学方程描述台球在桌子上的运动一样。欧拉方程是一种理想化的对流体运动的数学描述,它们在一定的假设范围内,模拟流体的运动。更确切地说,欧拉方程描述了流体中无穷小的粒子的瞬时运动。这个描述包括一个粒子的速度和它的涡量(即旋转的速度和方向)。
总的来说,这些信息汇聚成了一个“速度场”,描绘了流体在给定时刻的运动情况。欧拉方程从一个初始速度场开始,预测它在未来每一刻会发生的变化。
两个多世纪以来,它们似乎做到了描述任何情况下的任何流体运动。然而多年来,一些数学家一直怀疑欧拉方程在某些特定的情况下会失效,因为欧拉方程并不是对真实世界流体的完全描述,它包括几个非物理性的假设。例如,它们假设当流体的内流在流过彼此时,不会产生摩擦;再比如它们还假设流体是“不可压缩的”,这意味着在欧拉方程的世界里,流体是无法被压缩到比它已经占据的空间更小的空间里的。
今年,加利福尼亚大学圣迭戈分校(UCSD)的数学家Tarek Elgindi分别于4月和10月向arXiv提交了两篇论文,这两篇论文推翻了这组著名流体方程在几个世纪以来的假设。Elgindi证明了,在一组特定的情况下,欧拉方程会开始输出无意义的东西。他所找到的特例令众数学家们大吃一惊,因为这一“特例”是过去数学家们一直以为总能使方程有效的条件。但这并不代表欧拉方程从此将失去它在科学界的重要地位。
为了实现这个目标,Elgindi考虑了一个简化版的流体运动模型。在真实的三维流体中,任何粒子都有三个可以移动的轴,即x轴(左右)、y轴(上下)和z轴(前后),它们有很大的运动自由度;而且流体中的不同部分的粒子的运动不一定有任何密切联系。在Elgindi的研究中,他简化了欧拉方程需要处理的工作。他让流体的运动关于z轴对称,这种对称在真实流体中虽然并不存在,但却能使得对速度场的计算更加容易。
他还限制了流体的运动范围,流体中的粒子只可以沿z轴的方向,或朝着或远离z轴运动,不能绕着z轴旋转。这样的设定基本上把问题简化成一个二维问题。在Elgindi的证明中,他设定的流体是没有边界的,就像是在空间漂浮的一个点。现在,我们用水箱中的水为例来理解他的证明。想象在水箱的两端有两个厚厚的水环,它们就像漩涡一样在流体的主体内形成有组织的扰动。这种现象在自然界中确实存在。
现在,假设这两个环朝着相对的方向移动。在前进的过程中,欧拉方程正常运行,计算出流体在每个时刻的速度场。但当环越靠越近时,方程就开始出现一些异常值。方程计算出的结果显示,当两个环越靠越近时,它们就以越来越大的强度相互吸引,导致环的中央被拉长了,看起来更像一对漏斗。随着它们的中心越靠越近,它们的速度也越来越快,最终相撞。观察相撞时的速度场,就能看到从未在欧拉方程的假设情况下所看到的东西——奇点。
Elgindi证明了欧拉方程在相撞的点能计算出无穷大的涡量。Elgindi的结果完全改变了数学家看待欧拉方程的方式。在此之前,数学家从来没有证明过,在没有边界的情况下,欧拉方程只在短时间内有效,而不是永远有效。在这场漫长的寻找欧拉方程中的“弱点”的拉锯战中,终于有一位数学家作出了突破。