新型二维原子晶体VSe2的制备及其准二维量子相干输运

作者: 刘洪涛博士和鲍丽宏副研究员

来源: Nano Letters

发布日期: 2019-11-23

中国科学院物理研究所的研究团队成功利用化学气相沉积方法制备了少层VSe2单晶纳米片,并研究了其低温电子输运特性。该研究首次在少层VSe2中观测到弱反局域化效应及准二维输运特性,表明存在较强的自旋-轨道耦合作用。此项工作为单层VSe2的制备与物性研究提供了新思路,并促进了相关二维晶体材料的研究。

具有本征磁性的二维晶体材料及其磁性是新型二维原子晶体材料及其应用的重要研究方向,在下一代低功耗的信息处理与存储及自旋器件等方面具有潜在的应用。理论计算及实验表明,单层二硒化钒(VSe2)具有本征铁磁性,居里温度高于室温。在强自旋-轨道耦合作用下,其导带底和价带顶的自旋会发生极化,为本征谷极化材料,这使其在自旋电子学与谷电子学等领域具有很好的应用前景。

然而VSe2的物性尤其磁性严重依赖于层数,可控制备高质量、少层/单层的VSe2是研究其新奇物性的关键。

中国科学院物理研究所/北京凝聚态物理国家研究中心高鸿钧院士带领的研究团队多年来一直致力于新型二维原子晶体材料的制备、物性调控及原型器件等方面的研究,并取得了一系列研究成果。近期,他们在VSe2新型二维原子晶体材料体系研究方面,成功实现了单层VSe2的分子束外延可控制备及其一维图案化、功能化。然而,对其输运特性的研究一直受限于样品转移及厚度控制等方面的挑战。

最近,该研究组博士后刘洪涛和鲍丽宏副研究员等利用化学气相沉积(CVD)方法在绝缘衬底上成功地实现了少层VSe2单晶纳米片的可控制备,并对其层数依赖的低温电子输运特性进行了研究。首先他们发展了一种普适的升华盐辅助的CVD生长二维晶体材料的方法。该方法可实现高质量、多种层数VSe2的可控制备,最薄可至2.48 nm(约4层)。

VSe2纳米片的大小及厚度可通过钒源的用量、生长温度、载气中氢气的浓度等进行调控。在升华盐的作用下,生长温度大幅降低,最低可至400 ℃,从而实现少层VSe2的制备。生长过程中,升华盐高温气化,被载气带走,从而避免了样品的污染。高质量的样品通过X射线衍射、拉曼、透射电镜等表征方法得到确认。这种制备方法也适用于其它二维晶体材料如二硫化钒(VS2)、二碲化钒(VTe2)、二硒化钨(WSe2)等的合成。

基于高质量的、不同厚度的VSe2样品,他们进一步研究了其低温输运性质,并首次在少层VSe2单晶纳米片中观测到弱反局域化(WAL)效应及准二维输运特性。受量子限域效应影响,厚度小于5 nm的样品表现出准二维输运特性,从而观测到弱反局域化效应,这得益于样品的高质量和少层的厚度。利用HLN理论可以对该弱反局域化效应进行很好的拟合。

在1.9 K时,拟合得到的相位相干长度、自旋-轨道耦合长度分别为~50 nm与~17 nm。退相干机制主要由电子-电子相互作用导致。弱反局域化效应是在比较强的自旋-轨道耦合作用下的一种量子相干行为,该效应的发现表明,少层VSe2中存在较强的自旋-轨道耦合作用。此外,他们在VSe2样品中还发现了由电荷密度波(CDW)引起的迁移率涨落导致的较大的不饱和线性磁阻。

然而,在所有不同厚度的样品中,均未观测到反常霍尔效应,初步判断样品并无铁磁性。其可能原因是样品厚度仍较大,或者CDW态与铁磁相互竞争,CDW态为更稳定的基态。

综上,该项工作发展了一种低温制备层数可控的二维原子晶体材料的方法,为单层VSe2的制备与物性研究提供了一种思路,也会促进基于钒的二维原子晶体材料及其它二维晶体材料的生长与研究。相关工作发表在Nano Letters上。刘洪涛博士和鲍丽宏副研究员为共同第一作者,鲍丽宏副研究员为联系作者。该工作获得国家自然科学基金委、科技部和中科院的支持。

UUID: f11633d7-55dd-4e0d-9ed8-3075c25279c0

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院物理所公众号-pdf2txt/2019/中科院物理所_2019-11-23_进展 | 新型二维原子晶体VSe2的制备及其准二维量子相干输运.txt

是否为广告: 否

处理费用: 0.0051 元