将一杯浓盐水持续加热蒸发,过一会儿就会陆续出现晶莹的小颗粒——这是我们熟悉的无机物结晶过程。浙江大学化学系唐睿康教授团队在尝试“暂停”这类结晶过程时,“截获”到一种特别的最初产物——无机离子寡聚体。神奇的是,寡聚体能像高分子材料一样交联聚合起来,进而能形成连续的、大块的无机材料。这意味着,无机材料有望像塑料制品一样整体成型,并变化出各种复杂造型。
相关论文于10月16日刊登在Nature上,第一作者是刘昭明博士。研究团队还尝试用这一方法成功修复了碳酸钙单晶、海胆刺和人体牙釉质等无机材料。学界认为,这一方法创造了“无机离子聚合”这类新型的反应体系,跨越了无机化学与高分子化学的分界,预示着无机材料将以崭新的结构与性能走进人类生活。
结晶过程的“暂停键”从自然界恢弘奇幻的石灰石溶洞,到让人恨之入骨的肾结石,溶液中的成核结晶现象无处不在,也包含着关于晶体生长的共同秘密:溶质从离子状态到成核结晶,中间状态是怎样的?多年来,尽管有科学家提出过一些假说与理论,但始终没有直接观测证据。“我们想办法把‘中间状态’稳定住,再来研究它。”三年前的一个下午,唐睿康和刘昭明讨论起这个问题,但两人的思路不一样。
几天以后,刘昭明跑来告诉导师,“暂停键”找到了——一种叫三乙胺的小分子非常好用。刘昭明说,三乙胺能与碳酸根离子通过氢键发挥“封端”作用;同时又很容被去除,克服高分子包裹法的硬伤。三乙胺的加入,让“平铺直叙”的结晶过程变成了一场“赛跑”:溶液中的碳酸根离子既能与钙结合,又能与三乙胺结合,那么谁的速度更快?
最终结果是,几个碳酸根离子刚和几个钙离子形成一个“短链”,三乙胺就上来“封”在碳酸根离子的一端,让它无法再与下一个钙离子结合——于是,溶液中充满了被三乙胺“封”住的碳酸钙“短链”,科学家将其称为“寡聚体”。
“寡聚体”的概念来自于高分子化学,它是指少量单体组成的重复单元,可以和单体一样,交联聚合形成连续稳定的网络结构。塑料、橡胶等就是由单体或者寡聚体交联聚合而来的高分子。
“它们具有连续的结构,比如一个塑料脸盆,可以看做是一个大的分子。”唐睿康说,由于方便制造和具有一定的强度,塑料与橡胶等已经成为我们生活中不可缺少的材料。相比之下,通过溶液结晶法制备的无机材料则显得单调,它们往往以大量无序的微小的晶体粉末面貌出现,很难制造出连续结构。
“无机离子寡聚体”的出现,让科学家看到了无机材料“转型”的希望,一旦去掉溶液中的三乙胺,短促的“碳酸钙寡聚体”就会相互交联聚合起来,形成一个连续结构。通过这一方法,唐睿康团队首先制备了由碳酸钙寡聚体交联而成的无定形块体,在实验室里,尺度可以很方便地达到一厘米左右。通过引导结晶,无定形块体内部会进一步形成有序的结晶结构,进而还能够形成单晶。
“这个方法很有意义,在复杂形状构建或材料修复方面会很有优势,你们能否做到?”Nature编辑对这项研究产生了好奇。一次在饭店吃海鲜,刘昭明把海胆的壳带回了实验室,海胆的刺的主要成分是碳酸钙并且具有特定的多级有序结构,研究人员在受损的海胆刺上使用了碳酸钙寡聚体材料,并实现了完美修复。不仅如此,研究团队还实现了牙釉质修复和碳酸钙单晶的修复。
“在无机离子的寡聚体阶段,材料就像沙子,具有一定的流动性,此时易于形成各种造型;而当它们交联成有序的无机离子高分子,这种材料就具有连续性,并具有一定的强度。”唐睿康说。目前,人类已经能模仿天然橡胶做出人造橡胶、塑料等各种性能、形状丰富的高分子材料;而无机材料的应用场景有很大局限。而大自然是运用无机材料的高手,它向展示许多无机材料连续成型的精美作品:牙齿、骨骼……支撑起一个千变万化的自然世界。
在印度洋浅海的海底,生活着一种叫海蛇尾的海星近亲,哈佛大学的科学家曾经发现,它浑身上下遍布的“眼睛”竟是一整块连续的碳酸钙材料。人类也能做出这样宏观连续又精致材料的材料吗?“我们提供了一种方案,并且看到了曙光。”唐睿康说。