用沙拉酱模拟核聚变

作者: 科研圈

来源: 科研圈

发布日期: 2019-10-14

美国理海大学的研究者发现蛋黄酱在低温下的性质与高温高压下的熔化金属相似,因此用它来模拟核聚变过程,特别是研究瑞利-泰勒不稳定性。通过一系列实验,研究者们发现减小初始振幅和波长有助于形成更稳定的界面,为核聚变研究提供了新的视角。

在吃沙拉或汉堡包的时候,你有没有留意过里面甜丝丝的白色酱汁?这种蛋黄酱是西餐中“出圈”最成功的一种沙拉酱,它有着低调的香味和粘稠的口感,适合给许多食物当配角。不过,一位流体力学专家为蛋黄酱开发了全新用途,那就是模拟核聚变过程。

美国理海大学机械工程与力学系副教授、流体力学研究者阿林达姆·班纳吉几年前就发现,一种蛋黄酱在低温下的性质和高温高压下的熔化金属非常相似,是研究核聚变的好材料,于是愉快地用它做了一系列模拟实验。

受控核聚变被视为未来的“终极能源”,许多人致力于研究如何让它早日成为现实。核聚变的发生需要极高的温度和压力,让原子核具备足够的动能,克服静电排斥力“聚”在一起发生反应。目前有两种主流的方法来创造这样的条件:一种是磁环流约束,用强磁场将等离子体束缚在特定的空间中,例如甜甜圈一般的托卡马克装置;另一种是惯性约束聚变,用粒子本身的惯性使它们聚在一起。

惯性约束聚变的“燃料”被称为靶丸,它含有毫克级的氘和氚,大小在毫米量级。用激光照射靶丸表面时,靶丸迅速向内被压缩,当达到临界状态时,将诱发核聚变反应。这个关键环节被称为爆聚。靶丸爆聚过程示意图,图片来源:Wikipedia。

这样一个听起来如此酷炫的反应,却被一个小小的流体物理学问题严重制约着——由于靶丸金属外壳和气体的交界处存在瑞利-泰勒不稳定性,造成流体扰动,燃料容易在靶丸内尚未压缩至聚变条件时就提前爆炸。

RT不稳定在生活中十分常见。比如今年流行的“脏脏茶”里,奶茶和黑糖混合产生的花纹就是RT不稳定的体现。如果你把杯子倒过来,让密度大的糖浆在上面,密度小的奶茶在下面,还能看到一股股的糖浆顺着杯壁往下流。具体而言,RT不稳定发生在两种不同密度的材料之间,在材料界面密度梯度与压力梯度方向相反的时候。“在重力或任何加速场的存在下,两种材料会像‘手指’一样互相渗透,”班纳吉说。

为了研究这个问题,物理学家们又遇到了新的问题。核聚变不仅物理过程短暂,还需要苛刻的反应条件,这对实验室观测造成了困难。能不能用简单的方式模拟核聚变,少花点经费,多做点实验呢?早在几年前,班纳吉就发现了一个优秀的“替身”,那就是某品牌蛋黄酱。这种蛋黄酱含有80%的植物油、8%的水和2%的其他标准配料,它在低温下的弹塑性和高温下熔化的金属非常相似。

班纳吉带领团队,用低温下的蛋黄酱模拟高温下的靶丸金属外壳,利用高速摄像和图像处理算法,观测并计算了RT不稳定的相关参数。他们将冷藏的蛋黄酱倒进一个有机玻璃容器内,上方再扣一个同样的空容器,让蛋黄酱和空气形成密度梯度。这个容器将被固定在加速离心旋转轮上,蛋黄酱靠近转心;当转轮开始转动时,蛋黄酱会在离心力作用下与空气混合。

实验启动,蛋黄酱开始了它的表演。班纳特利用三轴数控机床切削导轨产生严格控制的精确余弦振动波,并传递到蛋黄酱上形成初始扰动,同时让滚轮转动起来,观测扰动的生长和变化。通过进一步改变波长和振幅组合,他们就能充分研究不同条件下蛋黄酱的“失稳阈值”。

一系列二维和三维扰动实验的结果均表明,减小初始振幅和波长有助于形成更稳定的界面,让失稳需要的临界加速度变大。

此外,在等效初始条件下,三维扰动比二维扰动更有利于界面稳定。关于RT不稳定的发生条件,学术界一直存在两种不同的观点:有人认为是界面初始条件决定了失稳的发生,也有人认为是局部剧烈突变导致了失稳的发生。而班内特的研究支持了第一种观点,即失稳取决于波动界面的初始条件,初始振幅和波长越小,失稳所需要的加速条件就越高。

班纳吉总结说,当前RT不稳定性的研究对象主要限于流体,对于加速固体中不稳定性的演化过程还所知甚少。加速固体时间尺度短,测量不确定度大,研究起来非常具有挑战性。蛋黄酱研究为计算机模拟提供了有价值的数据,也让他们能够进一步拆分问题,比如如何改进外壳材料。考虑到RT不稳定在自然界中的广泛存在,这些研究也许还能对大气科学、天体物理等领域带来启发。

或许这就是物理学的迷人之处——沙拉酱与奶茶,河流与星空,竟能被纳入同样的公式之中。

UUID: 2aed3c79-3586-4578-b2e1-402ce25fa929

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/环球科学公众号-pdf2txt/2019/2019-10-14_用沙拉酱模拟核聚变,这种事只有物理学家做得出来…….txt

是否为广告: 否

处理费用: 0.0052 元