今天,2019年诺贝尔生理学或医学奖授予哈佛大学的威廉·“比尔”·凯林(William "Bill" G. Kaelin)、牛津大学的彼得·拉特克利夫(Peter J. Ratcliffe)和约翰·霍普金斯医学院的格雷格·L·西门扎(Gregg L. Semenza),以表彰他们“在理解细胞感知、适应氧气变化机制中的贡献”。下面,我们将为读者介绍3位获奖科学家在氧气感知机制中的工作。
氧气由红细胞携带。如果红细胞不足,氧气传输会出现问题,进而导致细胞死亡。因此,动物演化出了一种能检测缺氧状态,并刺激红细胞生成的系统。身体在应对低氧状态时,会由肾脏分泌一种关键的激素:红细胞生成素(erythropoietin,EPO),保证身体红细胞产量提升,从而维持氧气供应。早在20世纪初期,科学家就已经知道了EPO,但其中的机制并不清楚。
上世纪90年代初期,西门扎开始探究,EPO基因是如何在不同氧气浓度下进行调控的。他猜测,EPO基因与其他基因的作用机制相似,一定存在激活它的蛋白,这种蛋白与名为增强子的DNA片段结合。西门扎发现了相应的增强子,并以此为诱饵,找到了转录因子:低氧诱导因子(HIF)。西门扎发现,当细胞缺氧时,HIF浓度会上升,进入细胞核并激活EPO基因。
此后,西门扎对HIF进行了提纯,明确了HIF的蛋白结构:HIF主要由两种结合不同DNA位点的蛋白组成,分别为HIF-1α和ARNT。
与此同时,拉特克利夫同样围绕EPO基因展开了广泛研究,他发现除了肾脏细胞中的EPO,几乎身体的所有组织也都存在氧气感应机制。在西门扎和拉特克利夫研究EPO基因与氧气感知时,另一边,凯林在研究一种遗传疾病——冯·希佩尔-林道(VHL)综合征时,意外找到了答案。这种疾病会由于遗传VHL突变基因,让家族成员更容易患上特定的癌症。
这3位科学家的工作,帮助我们深入理解了关于氧气对基础生理过程的调节机制。氧气感知机制不仅让细胞能够通过调节新陈代谢,以适应缺氧环境,还调控了免疫系统等其他生理功能。进一步的研究甚至发现,该机制在胚胎发育中也起到了关键作用:氧气感知机制控制着正常的血管形成及胎盘发育。除了这些基础性的意义,氧气感知机制的发现,还有助于提升人类对众多疾病的认知。