近日,世界公认的人工智能风向标,Gartner 2019年人工智能技术成熟度曲线图公布。它由69位Gartner国际分析师定制编写,揭示了人工智能在全球市场的成熟度以及未来发展趋势。相较2018年,2019曲线表明有更多的人工智能技术处在创新触发阶段,反映出全球人工智能正不断涌现新创意。
2019年人工智能技术成熟度曲线共有36项技术出现,其中成熟度周期包含了很多新技术,但被大众所知晓的有价值或有目标的很少,而被主流应用的则少之又少。在36项技术中,有16项技术需要2到5年才能达到成熟期。有15项技术需要5到10年才能达到成熟期,它们基本处于创新萌芽期与期望膨胀的顶峰期。而“稳步爬升的光明期”和“实质生产的高峰期”都比较空,出现的技术寥寥无几。
在曲线的峰值处,可以看到,AI Paas(人工智能平台服务)、Auto ML(自动化机器学习)、智能应用、聊天机器人等14项技术成为顶峰期人们对AI最大的期待。
相比之下,Robitic Process Automation Software(机器人流程自动化软件)、GPU Accelerators(GPU加速器)、Speech Recognition(语音识别)达到高峰期仅需要不到2年,或将成为最快落地的AI项目。
而Artificial General Intelligence(通用人工智能)、Quantum Computing(量子计算)、Autonomous Vehicles(无人驾驶)等技术实现难度仍有待探索,或许还需要超过10年的时间才能实现。
为了更直观地与2018年人工智能成熟度曲线进行对比,我们把2019年曲线与2018年曲线中各项技术按照所处的阶段进行了归类,上下顺序也按照曲线中的时间顺序进行了排列。相较于2018年,2019年的曲线表明有更多的人工智能技术处在创新萌发阶段,反映出全球人工智能正不断涌现新创意。
通过两条曲线的比较,可以发现,集成学习、虚拟现实、知识管理工具、商用无人机、预测分析、人环众包等8项技术已从2019年技术成熟度曲线中消失。相反,强化学习、决策智能、数据标注和注解服务、可解释人工智能、边缘人工智能、洞察引擎、量子计算等11项新技术则登上了2019人工智能曲线。Gartner的这种技术成熟度周期凸显出了人工智能正以多种不同的方式影响企业。
Gartner副总裁分析师Svetlana Sicular认为,今年的成熟度周期包含了很多新技术,但被大众所知晓或应用的很少,这并不代表AI是不可用的,这表示它将会发生改变,为了评估AI的价值和风险,CIO需要为其设定现实的预期。