铁基超导体超导涡旋中马约拉纳零能模的拓扑本质

作者: 丁洪、高鸿钧、Liang Fu

来源: Nature Physics

发布日期: 2019-08-23

中国科学院物理研究所的研究团队在铁基超导体FeTe0.55Se0.45单晶样品上发现了伴随马约拉纳零能模出现的涡旋束缚态能级序列半整数嬗移,反映了超导涡旋中马约拉纳零能模的拓扑本质。这一发现不仅进一步证明了铁基超导体超导涡旋中出现的鲁棒零能模是拓扑非平庸的准粒子激发,而且为证明其他凝聚态物理系统中的马约拉纳零能模提供了新的思路。

铁基超导体超导涡旋中的马约拉纳零能模是当前人们关注的前沿问题。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心丁洪研究员、高鸿钧院士与美国麻省理工学院Liang Fu教授通力合作,在铁基超导体FeTe0.55Se0.45单晶样品上发现了伴随马约拉纳零能模出现的涡旋束缚态能级序列半整数嬗移,反映了超导涡旋中马约拉纳零能模的拓扑本质。

相关研究结果以长文形式于8月19日发表在Nature Physics杂志。

在凝聚态物理系统中,马约拉纳零能模是束缚在拓扑缺陷上的拓扑非平庸的准粒子激发,其产生湮灭算符满足自共轭关系,因此可以被近似看作真实宇宙中的马约拉纳费米子在低维凝聚态物理系统中的类比。理论证明,马约拉纳零能模满足非阿贝尔任意子统计规律,多个马约拉纳零能模的交换编织操作可以产生大量简并基态(量子比特),是实现容错拓扑量子计算的主要路径之一。

自2014年起,中国科学院物理研究所的联合研究团队首创了铁基超导体拓扑非平庸能带结构的研究方向。通过角分辨光电子能谱实验和第一性原理计算,研究团队证明了高温铁基超导体FeTe0.55Se0.45中强拓扑绝缘体态与超导态可以共存,拓扑狄拉克表面态出现“自赋”的全能隙超导现象。高温超导电性和拓扑能带结合于单一材料有效避免了p波超导配对和异质结结构的困难,这为马约拉纳零能模的研究开辟了新天地。

2017年6月,中国科学院物理研究所高鸿钧/丁洪研究团队,利用高鸿钧研究组自主设计、集成组装的两台独立的He-3极低温强磁场扫描隧道显微镜(STM)联合系统精确测量了FeTe0.55Se0.45单晶样品的超导涡旋,清晰地观测到了鲁棒的零能涡旋束缚态。进一步实验分析表明,该零能束缚态是表面狄拉克电子超导配对诱发的马约拉纳零能模,而体态平庸电子对其形成没有贡献。

自2018年7月开始,丁洪研究员和高鸿钧院士进一步紧密合作,共同指导博士研究生孔令元、朱诗雨和陈辉博士等在前期工作的基础上对FeTe0.55Se0.45超导涡旋中的束缚态进行了更加全面系统的研究。他们在高鸿钧研究组的居国际顶尖水平的极低温强磁场扫描隧道显微镜(STM)联合系统上开展实验研究工作,通过扫描隧道谱实验发现有两类超导涡旋共存于样品表面。

马约拉纳零能模存在于拓扑涡旋中,同时伴有整数量子化能级序列的涡旋束缚态。与之相对应,在另一类平庸涡旋中没有马约拉纳零能模,且其涡旋束缚态能级序列呈现半整数行为。

这项系统研究工作是对之前工作的完善和扩展,开创性地将马约拉纳零能模的拓扑本质与涡旋束缚态的全局行为建立联系,不仅进一步证明了铁基超导体超导涡旋中出现的鲁棒零能模是拓扑非平庸的准粒子激发(马约拉纳零能模),而且为证明其他凝聚态物理系统中的马约拉纳零能模提供了新的思路。

UUID: 6c54c5e8-0d61-41b2-b9bb-3d78a405104e

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院物理所公众号-pdf2txt/2019/中科院物理所_2019-08-23_进展 | 铁基超导体超导涡旋中马约拉纳零能模的拓扑本质.txt

是否为广告: 否

处理费用: 0.0057 元