近日,浙江大学、中科院物理所、中科院自动化所、北京计算科学研究中心等国内单位组成的团队通力合作,开发出具有20个超导量子比特的量子芯片,并成功操控其实现全局纠缠,刷新了固态量子器件中生成纠缠态的量子比特数目的世界记录。这一进展今天发表于《科学》杂志。多比特量子纠缠态的实验制备是衡量量子计算平台控制能力的关键标志,国际竞争尤为激烈。
经过近两年时间的器件设计与制备、实验测控及数据处理,由中国学者组成的联合团队成功将纠缠的比特数目推进到20。
浙大物理系博士生宋超、中科院物理所许凯副研究员和博士生李贺康为论文共同第一作者。中科院物理所范桁研究员、郑东宁研究员和浙大王浩华教授为共同通讯。其他作者包括浙大王大伟教授、朱诗尧院士,中科院自动化所蒿杰研究员、冯卉助理研究员,北京计算科学研究中心张煜然博士,以及浙大物理系承担超导量子计算和量子模拟实验的青年团队。
关于量子计算机的梦想始于上世纪80年代。
1982年,著名物理学家费曼提出设想:既然自然的本质是量子态的,我们能否造出一台遵循量子规律的计算机,去更好的认识量子世界?人们意识到,量子计算机的技术一旦成熟,它的运算能力将远远超越经典计算机。计算机使用“0”和“1”进行信息存储与处理。在经典计算机里,一个比特就如一个普通开关,或0或1。量子计算机则完全不同,由于量子纠缠与叠加,一个“量子开关”可以同时代表0和1,我们称之为量子比特。
量子比特数,是衡量量子计算机性能的重要指标之一。通过量子纠缠与叠加,n个量子比特相互关联,可以生成2^n种状态。也就是说,一个含有n个比特的经典存储器可以存储2^n个可能数据当中的任意一个,如果它是量子存储器,则可以同时存储2^n个数。相当于2^n个经典计算机的CPU同时工作。每增加一个量子比特,量子计算机的运算能力将以指数倍增加。
有报道指出,一台30个量子比特的量子计算机的计算能力和一台每秒万亿次浮点运算的经典计算机水平相当,是今天经典台式机速度的一万倍。人们相信,一旦量子比特数达到50以上,它就能在处理某些特定问题时展现超越超级计算机的运算能力。
近年来,不论是单个量子比特的相干性、量子门的保真度,还是量子芯片的集成度、全局纠缠态的制备规模,都在稳步提升。此前,中国科技大学的研究团队创造了操纵12个量子比特实现纠缠态的记录。如今,这个数字被刷新,人类能够同时精确操控20个量子比特进行工作。
实验团队利用这一芯片生成并标定了18比特的全局纠缠的GHZ态,以及20比特的薛定谔猫态。
“我们确实看到了在经验世界中看不到的现象,用更形象就是——一只由20个人造原子构成的‘猫’,薛定谔猫态。”宋超说。实验中先将每个量子比特都精确制备于相同量子态,然后操控所有量子比特根据系统参数进行演化。随着时间的推移,实验人员观察到量子态在最开始会被压缩,之后在不同时间点分别出现5,4,3,2个组分叠加的薛定谔猫态——在这些时刻,整个系统同时处于不同状态的叠加。
量子计算机的研发是国际科技竞争的热点领域。谷歌、IBM、微软、英特尔、华为、阿里等高科技公司都为此投入大量研究力量。当前,实现量子计算的物理体系主要有光学系统、离子阱和量子点等微观体系,基于宏观约瑟夫森效应的超导电路由于其在可操控性和可扩展性等方面的优势,是目前国际上公认的有希望实现量子计算的几个物理载体之一。
近年来,浙江大学物理系的超导量子计算和量子模拟团队一直致力于超导量子计算和量子模拟的实验研究。2017年,团队与中科大潘建伟研究团队合作10比特超导量子芯片,实现了当时世界上最大数目的10个超导量子比特的纠缠,打破了之前由谷歌和加州大学圣塔芭芭拉分校保持的记录,使得我国在量子计算机研究领域进入国际第一梯队。