只用三页纸,他推翻了困扰学界半世纪的重要猜想

作者: Erica Klarreich

来源: 科研圈(ID:keyanquan)

发布日期: 2019-07-05

一位俄罗斯数学家发表了一篇仅有三页的论文,推翻了图着色问题领域存在了 53 年的一个重要猜想。这篇论文证明了对于某些特定的网络而言,着色问题存在许多数学家没有想到的更好的解法。

四色猜想是数学界最著名的猜想之一,即能否只用四种颜色给任意一张地图上色。这一猜想已经被证明是正确的,但它的衍生问题仍然让数学家着迷不已。最近,一位俄罗斯数学家发表了一篇仅有三页的论文,推翻了该领域存在了 53 年的一个重要猜想。

今年 5 月在线发表的一篇论文推翻了 53 年前提出的一个猜想,为图着色问题提出了新的最优解。这篇论文仅仅三页,却证明了对于某些特定的网络而言,着色问题存在许多数学家没有想到的更好的解法。图着色问题最早来源于人们在为地图上色时的思考——最少使用多少种颜色,就能够保证地图中有相邻边界的国家或地区颜色不同?为了解决这一问题,数学家们钻研了近 200 年。

这一问题可以被进一步简化:将一张网络的每个节点染色,使得任意两个相连节点颜色不同,最少需要多少种颜色?解决这个问题可以帮助我们更加高效地应对许多日常生活中的场景,例如如何在婚礼上为来宾安排座位,或如何为工厂安排不同时段的任务,甚至可以还用来解决数独问题。图着色问题往往表述非常简单,但是证明起来十分困难。

即使是开启了这一领域的问题,即能否只用四种颜色就能给任何一张地图上色,保证两个相邻的区域颜色各不相同,也历经了一个世纪的求解。这篇最新发表的论文也没有推翻“四色规则”,却提出了一种更好的解法。

这一问题之所以 50 多年来一直都未能被解决,是因为它涉及到了复杂的张量积问题,即由两个不同的图形以特定的方式组成的新图形。

G 和 H 的张量积是一个更大的新图形,其中每一个节点都代表了来原始图形中的一对节点,分别来自 G 和于 H;并且,如果张量积中的两个节点在 G 中对应的节点和在 H 中对应的节点都是相连的,那么它们也是相连的。设想一下,如果你是一名音乐老师,你想为五年级孩子们的音乐会找到好的二重奏组合。

你便可以绘制这样的两幅图:一幅图中,用不同的点代表不同的学生,点与点之间的连接代表两个学生相处融洽、可以配对;另一幅图中,用不同的点代表不同的乐器,点与点之间的连接代表二重奏乐谱中包括有这两件乐器的乐谱。那么,这两幅图的张量积中所包含的点则代表一名学生及其会演奏的一种乐器,如果张量积中的两个点相连,则意味着两名学生能相处得很好,乐器的种类也能搭档,可以组成二重奏。

1966 年,现为克莱姆森大学教授的 Stephen Hedetniemi 在他的博士论文中提出,填充张量积时需要的最少颜色数量与填充组成它的两张图时需要的颜色数量较少的那张相同。几十年以来,数学家积累了一系列有关这一猜想的研究证据,其中一些表明它是正确的,而另一些则认为它是错误的。尽管数学家们对于这个猜想的正确与否各执一词,但似乎每个人都同意,无论是证明还是证伪都非常困难。

现在,俄罗斯数学家 Yaroslav Shitov 提出了一种简单的方法来构建反例:填充张量积需要的颜色比填充两个组成图时需要的颜色都要少。Shitov 通过一个清晰、简单的证明终结了这些争议,证明 Hedetniemi 的猜想是错误的。在那篇研究论文中,他仅用了略多于一页密集的数学论证,便展示了如何构造一个张量积反例,使得填充它所需要的颜色比填充其任何一张组成图所需要的颜色都要少。

UUID: 87109bd4-770f-4c51-91d3-920a012bcf62

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/环球科学公众号-pdf2txt/2019/2019-07-05_只用三页纸,他推翻了困扰学界半世纪的重要猜想.txt

是否为广告: 否

处理费用: 0.0053 元