20多年前,科学家发现宇宙膨胀正在加速,并称其原因为“暗能量”。此后的大量研究不仅未能揭示暗能量的本质,反倒引出更多问题:宇宙未来会终结于大挤压还是大撕裂?我们是否生活在多重宇宙中?……随着近期和未来一些实验的展开,科学家希望能最终得到答案。
宇宙每分每秒都在扩大,星系相互远离,星系团之间也渐行渐远,就连空无一物的星际空间都越来越浩渺,自20世纪20年代埃德温·哈勃等人发现宇宙膨胀之后,这些知识已广为人知。但在近些年,天文学家发现上述过程正在加速,宇宙膨胀的步伐不断加快,星系相对彼此退行的速度也在变得越来越快。
这个令人震惊的事实,就是本文作者之一里斯和澳大利亚国立大学的布赖恩·施密特共同领导的小组,在1998年通过测量遥远的超新星爆发而发现的。同年,加利福尼亚大学伯克利分校的索尔·佩尔穆特带领的小组利用类似方法得到了相同的结果。结论显而易见:一定有什么在推动宇宙加速膨胀,但究竟是什么呢?
这种东西能产生斥力,因为很明显它正在将宇宙向外推挤,我们给它起了一个名字——暗能量。在对其进行了将近20年的研究之后,暗能量的物理本质仍然和最初一样难以捉摸。而一些最新观测与目前所有的流行理论都难以吻合,让问题变得更加复杂。
眼前,我们有几个问题迫切地需要解答:什么是暗能量?暗能量的本质对宇宙的未来有何影响?最后,暗能量的奇怪性质是否暗示着我们宇宙的属性是随机获得的,这个宇宙实际上是多重宇宙的一部分,而这个多重宇宙还包含很多其他宇宙,每个都有不同的性质和不同强度的暗能量?
对暗能量本质的全力探寻已经开始,如果几个新天文观测项目进展顺利的话,前景一片光明,我们希望在下个10年内可以开始回答上述问题,从而更为深入地理解宇宙加速膨胀的本质,当然也可能无奈地将某些悬而未决的问题继续束之高阁。
科学家提出了诸多假说,来解释宇宙的加速膨胀。其中,头号候选理论认为加速膨胀的驱动力源自宇宙空间本身的属性。
量子力学认为真空并非“空无一物”,而是充斥着大量“虚”的粒子和反粒子对,它们同时产生,刹那之间又相互湮灭。尽管听上去很奇怪,但这些仅能存在一瞬间的粒子对携带着能量,而能量与质量一样,能产生引力。不过与质量不同的是,能量不仅能够产生吸引的引力,还能够产生推斥的引力,这取决于其压强是正还是负。按照量子理论,真空中的能量应该具有负压强,因此有可能就是它们产生了导致宇宙加速膨胀的推斥引力。
这个理论等价于“宇宙学常数”,即爱因斯坦在其广义相对论方程中加入的一个常数项,用来表示空间本身具有的均匀能量密度。如其名称“宇宙学常数”所示,这个假说认为暗能量密度也是一个常数,不随时间和空间变化。目前天体物理的观测证据与这种宇宙常数假设比较相符,当然也并非完全一致。
除此之外,暗能量也可能是一种被称为“精质”的能量场,弥漫在整个宇宙之中,占据空间的每一点,可以抵消引力的吸引作用。物理学家对场并不陌生——无处不在的电磁力和引力就通过场来发挥作用(尽管它们通常来自一个局域的场源,而非充斥整个空间)。
如果暗能量是一个场,它就不太可能是一个常数,而且也可能会随着时间变化。如此一来,过去的暗能量可能比现在更强或是更弱,对宇宙的影响也因时而异。同样地,它的强度和对宇宙演化的影响也可能在未来发生变化。在这个理论一个名为渐冻场的版本中,暗能量的变化随着时间推移会越来越慢,与之相对的解冻版本则认为暗能量场的变化会越来越快。
第三种解释宇宙加速膨胀的理论认为,根本没有什么暗能量,宇宙的加速膨胀源于爱因斯坦的引力理论(广义相对论)无法解释的物理现象。爱因斯坦的理论是不完备的,有可能在极大的尺度下,比如星系团或者整个可观测宇宙的跨度下,引力定律会偏离目前的理论预测,带来异常的引力效应。
物理学家已经沿着这个方向开展了一些十分有趣的理论探索,但是还未能找到一个与目前所有观测相吻合的自洽理论,因此目前看来暗能量假设仍然占据上风。
暗能量的性质将决定宇宙的最终命运。如果暗能量真的是真空能(或者说是宇宙学常数),那加速将永远持续下去,大约在1万亿年之后除了离银河系最近的那些星系(即本星系群,到那时会合并成一个大型的椭圆星系)之外,其他所有星系都会以光速远离我们,再也无法观测到。
就算是来自宇宙大爆炸的远古晨曦——宇宙微波背景辐射(CMB),到那时波长也会被拉扯到与整个可观测宇宙的尺度相当,因此难以察觉。在这样的图景中,我们恰好生活在一个非常幸运的时间段,拥有观察周围宇宙的最佳时机。
另一方面,如果暗能量不是真空能而是某种未知的场所携带的能量,宇宙的结局则更为开放。这个场有多种不同的可能演化方式,分别对应着不同的宇宙命运。
宇宙可能会最终停止膨胀,反而开始收缩,最终在“大挤压”中将肇始万物的大爆炸重演一遍。宇宙还可能进入“大撕裂”状态,上至星系团下到原子和原子核,宇宙中的一切复杂结构都屈从于强大的暗能量而被撕扯得四分五裂。当然,上面提到的持续加速进入冷寂也是暗能量场的可能结局之一。
如果最终我们发现,广大相对论不够准确,自己需要的是一个替代性引力理论,那根据理论细节的不同,宇宙的结局也会千变万化。
尽管宇宙学常数假设最受青睐,但其极弱的强度仍是需要面对的问题。美国得克萨斯大学奥斯汀分校的物理学家史蒂文·温伯格早在加速膨胀被发现之前就意识到宇宙学常数存在这个问题,他提出了一个新的思路,即宇宙学常数并非是由基本物理定律决定的独一无二的量,而是一个随机变量,在一个巨大的宇宙系统——多重宇宙中,每个宇宙都具有不同的宇宙常数。
一些宇宙可能具有更大的宇宙常数,但是相应地就会有更大的加速斥力,导致物质在这样的宇宙中无法凝聚形成星系、行星和生命。
由此温伯格推断,因为我们存在,因此我们必然会发现自己身处一个得以允许生命出现的宇宙,也就是一个宇宙学常数碰巧非常微小的宇宙。这个想法后来得到了塔夫斯大学的亚历山大·维连金、剑桥大学的马丁·里斯和本文作者之一利维奥的进一步改进,被称为人择推理。
即便不考虑暗能量问题,也有合适的理由得出多重宇宙理论。被广泛接受的宇宙暴胀理论认为,宇宙在诞生后第一秒之内曾急剧膨胀,维连金和斯坦福大学的安德烈·林德证明,这种暴胀一旦开始,就必定会一次又一次地重复发生,从而产生数量无限的宇宙泡泡,或者称为“口袋宇宙”,这些宇宙相互之间完全隔离,性质可能差异很大。
从弦论出发,似乎也能得出多重宇宙。作为可以统一所有自然力的候选理论之一,弦论有不同版本,拉斐尔·布索和约瑟夫·波尔金斯基基于其中一个名为M理论的版本进行的计算指出,应该有多达10500种不同的时空或者说宇宙,每个都具有不同的基本常数,甚至不同数量的空间维度。
但有些物理学家一提多宇宙就血压上升,因为这个想法看上去既无法接受又难以检验,而且有可能标志着我们熟知的经典科学方法的终结。传统上,经典科学方法要求假说必须能被新的实验或观测直接检验。不过,多重宇宙概念的确做出了一些可供检验的预测,特别是某些多重宇宙模型预测时空的形状会有轻微的弯曲,这也许能被观测到。还有一种可能,尽管希望不大,宇宙微波背景辐射中也许会记录下我们的宇宙和另一个宇宙碰撞时产生的涟漪。
因为空间中的暗能量比宇宙中任何其他成分的密度都要大,它对宇宙有着决定性影响,操控者宇宙的命运。尽管如此,但暗能量并非总是占据上风,宇宙的其他成分:辐射(光)和物质(包括常规物质以及看不见的暗物质)在宇宙还比较小的早期阶段也都曾占据过统治位置,当时它们密度比现在更大。随着宇宙不断膨胀,物质和辐射逐渐分散,暗能量后来居上,如果暗能量密度继续增加,它会越来越强大最终撕裂空间中的一切结构。
根据目前我们的认识,揭示暗能量本质的最佳途径是测量它的压强和密度之比,我们称这个比值为状态方程参数,用w来表示。如果暗能量是真空能(即宇宙学常数),那么w将是一个等于-1的常数。如果暗能量来自某个随时间变化的场,我们探测到w的数值就应该偏离-1,而且随着宇宙演化不断变动。如果观测到的加速膨胀表明,爱因斯坦的引力理论在极大的尺度下需要修正,我们应该能观察到w在不同尺度下有着不同的数值。
天文学家已经设想出一些非常巧妙的间接方法,用来测量暗能量的压强和密度。作为一种具有排斥作用的引力,暗能量或修正后的引力会抵消常规引力的吸引作用(后者将宇宙中的物质聚集到一起),从而阻碍诸如星系团这类大尺度结构的形成。因此,通过研究星系团随时间的变化,科学家能测量不同历史时期的暗能量强度。
星系团会使背景星系的光线发生偏折,产生所谓引力透镜现象,通过观测光线偏折程度的大小,我们可以推测出星系团的质量,而通过观测不同距离处星系团的引力透镜效应,我们就能测量出宇宙不同时期大质量星系团的分布(因为光速有限,天文观测就相当于在回溯时间,距离越远时间越早)。
我们还可以通过测量宇宙膨胀速度的变化来测量暗能量。
通过观测不同距离处的天体并测量其红移(光的波长随空间膨胀而增大的程度),就可以知道自光从该天体出发以来宇宙膨胀了多少。实际上发现宇宙加速膨胀的两个小组用的正是这个方法,他们测量的是不同的Ia超新星的红移(这类超新星的亮度与其距离保持着非常严格的关系)。该技术还有一个“变种”,通过测量重子声学振荡来追踪宇宙的膨胀历史,重子声学振荡是空间中星系密度的波动幅度,是另一个良好的距离指示物。
到目前为止,大多数测量得出的w都与-1相符,观测误差不超过10%,因此是支持宇宙学常数的。一个由里斯带领的团队使用哈勃空间望远镜,利用超新星方法探测了100亿年之前的暗能量,没有发现暗能量会随时间变化的迹象。
尽管如此,过去几年间一些偏离了宇宙学常数预测的线索仍值得注意。例如,结合普朗克卫星对宇宙微波背景辐射的测量和引力透镜研究的结果来看,w的值似乎比-1更小。
第一台全景巡天望远镜和快速反应系统观测了超过300个超新星,来追踪宇宙膨胀,其结果似乎也表明w要小于-1。而针对名为类星体的遥远亮星系的重子声学振荡测量显示,暗能量的密度可能是随时间增加的。最后,通过局域测量得到的当前宇宙膨胀速度和根据CMB得出的原初膨胀速度存在微小的矛盾,可能也表明真实的暗能量不符合宇宙学常数的预测。
不过虽然这些结果引人遐思,但都还不够令人信服,未来更多的观测数据可能会令这些差异变得更有说服力,也有可能证明它们只是系统误差而已。
眼下科学家正在努力工作,有望在未来十年内将暗能量的测量精度提高100倍。暗能量巡天项目已经在2013年启动,大型综合巡天望远镜预计将于2021年投入运行,这些新项目将搜集更多有关宇宙中大尺度结构和宇宙膨胀历史的信息。
美国航空航天局的广视场红外巡天望远镜及天体物理专用设备预计于21世纪20年代中期发射,作为一台2.4米口径的空间望远镜,它有望观测到遥远的超新星和重子声学振荡,以及引力透镜现象。欧洲空间局的欧几里得空间计划也准备在2020年发射,目标同样包括引力透镜和重子声学振荡,同时它还将通过红移测量星系距离,以确定宇宙中星系团的三维分布。
最后,我们还可以通过太阳系内的实验来检验那些引力修正理论。方法之一是以极高的精度测量地月距离(利用阿波罗计划放置在月球表面的反射镜来反射从地球发射的激光束),从中探测与广义相对论预言的微小差异。此外,还有一些别出心裁的室内实验也将寻找现有引力理论中的细微矛盾。
未来几年是研究暗能量的关键时刻。我们有望在宇宙加速膨胀问题上获得真正的进展,而谜底将揭示宇宙的未来。