纪念盖尔曼

作者: 施郁

来源: 知识分子

发布日期: 2019-05-26

本文纪念了粒子物理学家默里·盖尔曼,他提出了夸克理论并因其对基本粒子及其相互作用的分类贡献而获得诺贝尔物理学奖。文章详细介绍了盖尔曼的学术生涯、主要贡献及其与其他物理学家的关系,包括与杨振宁和费曼的互动。盖尔曼的去世引起了物理学界的广泛关注和惋惜。

最顶尖的天才又走了一个,杨振宁惋惜

纪念盖尔曼

施郁

知识分子

2019-05-26

图源:wikipedia.org

撰文 | 施郁(复旦大学物理学系教授)

● ● ●

现代德谟克里特

古希腊的德谟克里特提出,物质由不可分割的基本单元组成,叫做“原子”。中文确实有物质基本单元的意思,英文atom则来源于希腊语ἄτομος,就是“不可分割”的意思。

19世纪,道尔顿根据化学反应的规律,提出物质由原子组成。后来,原子论也得到玻尔兹曼、爱因斯坦、皮兰等人从统计物理角度的支持。物理学家进一步发现,原子由电子和原子核组成,并由量子力学描述。这完美解释了门捷列夫的元素周期表,将化学统一到了物理学,但是也说明现代科学中的原子是可分割的。

然而,目前的科学理论中,确实有不可分割的物质基本单元,这就是夸克。夸克才是德谟克里特“原子”(ἄτομος)的现代对应物。夸克理论的提出者默里·盖尔曼(Murray Gell-Mann,1929.9.15-2019.5.24)刚刚去世,年近90岁。1969年,他40岁时,“因为对基本粒子及其相互作用的分类所作出的贡献”独享诺贝尔物理学奖。笔者觉得,盖尔曼堪称现代德谟克里特。

在1930年代之前,新粒子的理论预言和实验发现都是很困难的事情[1]。1932年,查德威克发现中子。从此人们知道原子核由质子和中子组成,统称核子或者重子。1934年,汤川秀树预言传递核子之间作用力的介子。这就是1947年鲍威尔在宇宙线中发现的π介子。在这之前,1937年在宇宙线中发现缪子,曾被认为是介子,后来知道是与电子属于一类的,叫做轻子。

1949年,费米和杨振宁考虑了介子不是基本粒子,而是由核子及其反粒子组成的模型。1950年代初,很多“奇异”的粒子被发现,先是在宇宙线中,后来也在布鲁克海文实验室的新加速器Cosmotron中,它们也归为重子和介子。面对这些新粒子,诺奖得主拉比感叹:“是谁订购的?”另一位诺奖得主兰姆在诺奖演讲中说:“我听说有一种说法,发现新的基本粒子以前能获诺奖,现在应该罚款一万美金。”

他给复杂无序的粒子世界带来了秩序

1953年,盖尔曼提出一个新的指标(量子数),叫做奇异数。在强相互作用主宰的粒子产生过程中,奇异数是守恒的。而在弱相互作用主宰的衰变过程中,奇异数不守恒。在此过程中,盖尔曼还预言,中性K介子也有反粒子。

在这之前,派斯提倡要寻找新的量子数、守恒律和对称性,并曾经提出一种量子数,奇偶性必须守恒,所以有粒子的联合产生。盖尔曼的奇异数理论取代了派斯的理论。

在思想形成的初期,盖尔曼曾在普林斯顿做了一个报告,派斯不以为然,说这是他自己想法的一个例子。后来盖尔曼完成了两篇论文,派斯发现正是他所期待的理论,于是邀请盖尔曼合作一篇会议文章,由派斯在会议上报告,总结了该领域的情况。在此过程中,他们也合作了一篇论文,提出正反中性K介子都是两种不同寿命的K介子的量子叠加态。事后盖尔曼觉得自己被利用,两人反目为仇[2]。

1961年,盖尔曼提出了当时粒子物理的“元素周期表”,称之为八正道(这个名词从佛教语言中借用,但只是作为一个词,盖尔曼不信教)。根据当时的基本粒子的电荷和奇异数,将重子和介子排成规则的几何图形。8个最轻的重子组成六边形,另有2个重子在中心,构成重子8重态。8个最轻的介子也组成六边形,另有2个在中心,构成介子8重态。

另外,9个重子构成三角形图案,另有一个顶点空缺,那里的粒子应该是具有电荷-1,奇异数-3,叫做负欧米伽(Ω-)。3年后,这个粒子果然被找到了。

八正道的成功表明了这些基本粒子之间的所谓的SU(3)对称性。每个图案都是这个对称性的一个表示。作为这个对称性的基本表示,盖尔曼1964年提出夸克模型,包含3种夸克。每个介子由2个夸克组成,每个重子由3个夸克组成。夸克具有分数电荷。但是通常夸克不能自由存在,只能禁闭在介子或者重子中。

后来,人们发现有6种夸克,或者说,夸克有6味。

值得一提的是,驻伦敦的以色列武官尼曼独立提出了类似于八正道的理论,费曼的学生茨威格在CERN工作时独立提出类似夸克理论的aces理论。而且,盖尔曼原本并不认为夸克是真实的粒子,茨威格从一开始就认为aces是真实的粒子。但是茨威格不愿意在欧洲杂志发表(为此与CERN的主任发生冲突),而美国的《物理评论》没有接受他的论文,因此他的文章第一篇没有发表,第二篇十几年后发表在一本文集中。

有点讽刺意味的是,盖尔曼的论文发表在欧洲杂志《物理通讯》。

1962年,盖尔曼还提出所谓流代数,运用对称性,通过“流”这个物理量的代数关系,在不了解夸克的动力学的情况下,可以给出夸克模型的预言。1964年,格林伯格提出夸克还具有“色”自由度。1972年,弗里兹希和盖尔曼提出用杨-米尔斯理论,通过色来描述强相互作用,叫做量子色动力学[3]。

1973年,格罗斯和韦尔切克,以及普利策发现杨-米尔斯理论具有渐进自由的性质,也就是说,距离越短,相互作用越弱。这确定了量子色动力学的物理意义。

由于诺贝尔奖一般不会授予已经得过诺奖的人,盖尔曼的去世或许增加了弗里兹希与他人分享诺奖的可能性。

费米:“我将物理学交给你们了”

盖尔曼对粒子物理还有很多其他贡献。1952年,与戈德伯格合作研究色散关系。

1953年,与娄(Francis Low)合作研究重整化群,发现相互作用强度取决于能量和空间尺度(1970年代以后,重整化群在粒子物理和统计物理中都变得非常重要)。1957年,弱相互作用的宇称不守恒确立后,和费曼提出V-A理论(这个理论也由苏达山和马夏克提出)[4]。1954年,为了寻找大量奇异粒子产生背后的相互作用规律,杨-米尔斯理论提出。盖尔曼对之很感兴趣,建议费曼研究它的量子化。

1960年代初期他与格拉肖研究过SU(2)之外的李群下的杨-米尔斯理论,自己也尝试过电磁作用与弱作用的统一,但未成功。1960年,盖尔曼与勒维等人合作研究轴矢量流的部分守恒。1960年代,他还在强相互作用的雷奇理论(量子色动力学出现之前的理论,研究散射作为角动量的函数的数学性质)方面做了很多工作。盖尔曼在粒子理论中的领导地位延续了很多年。

盖尔曼出身于纽约的犹太平民,这一点与费曼一样。父母都来自奥地利,在美国相识。父亲曾经在纽约办过语言学校,母亲相信盖尔曼能做大事[5]。盖尔曼从小就显示出不凡的语言能力,以及对鸟类、植物、演化、考古、历史这些东西的兴趣和渊博知识,持续一生。大概与此特质密切相关,他后来在粒子物理中,对粒子分类作出杰出贡献,还命名了很多东西。而他后来转向复杂性的研究,大概也与这种广泛的兴趣有关。

盖尔曼15岁进入耶鲁大学,19岁进麻省理工学院读博士,导师是韦斯科夫,22岁获得博士学位,可谓天才。之后,他去普林斯顿高等研究院做博士后,那是1951年。夏天还去伊利诺伊大学访问。一年后,同办公室的戈德伯格(费米的学生)回芝加哥大学任助理教授,帮助盖尔曼联系到去那里任讲师。这是杨振宁曾经担任过的职位,所以盖尔曼咨询杨振宁,了解到这个职位只需要每学期上一门课,而且肯定能升为助理教授。

于是接受了这个职位[5]。在芝加哥,盖尔曼做出了奇异数、色散关系和重整化群的重要工作,成为学术明星。

1954年秋,费米病重。盖尔曼当时刚到哥伦比亚大学做访问副教授。他叫上杨振宁,飞到芝加哥探望费米。当他们离开时,听到费米在他们身后的说:“我将物理学交给你们了。”[6]虽然芝加哥和哥伦比亚都给盖尔曼永久职位,他1955年选择了加入加州理工学院,成为费曼的同事。

1971年,施瓦兹等人在普林斯顿创立超弦理论。1972年,盖尔曼将施瓦兹聘来,持续支持,虽然当时超弦理论还处于低潮。1980年代,施瓦兹和格林取得了极大进展,超弦理论变得热门起来。1984年,盖尔曼和安德森、派因斯等人一起创立圣塔菲研究所,致力于复杂性的研究。1993年他从加州理工退休后,搬到了圣塔菲。笔者觉得,他对复杂性的兴趣大概与他长期的广泛兴趣有关。

盖尔曼曾经有过一个“臭名昭著”的玩笑,称固体(solid)物理为肮脏(squalid)物理。而他的导师韦斯科夫以前说过,粒子物理是基本的物理,固体物理是扩展的物理。两人说法都让安德森恼火。据笔者理解,盖尔曼同意每个层次有规律涌现出来,但是认为这类似于对称破缺,不同意安德森所说的不能还原到低层次的规律。

在这个时期,盖尔曼还和他过去的学生哈特尔研究退相干,即经典世界如何出现在量子力学中,并用到量子宇宙学。他们的理论建立在量子力学的多世界和自洽历史诠释之上。

天才之间的惺惺相惜

按照戈德伯格的说法,盖尔曼在获奖之前的6年之内,就是诺奖的热门人选。1969年,他因为对Ω-的预言,得到一个研究大奖,这预示他很可能要得到诺奖,因为很多诺奖得主在得诺奖前得了这个奖。有人问他12月有没有空时,他说有。

李政道莫测高深地反问:“你确定吗?”盖尔曼得诺奖后,费曼给予了极高的赞誉:“这标志着对我们已经知道很长时间的事实的公开认可,这个事实是,盖尔曼是今天的领头理论物理学家。过去20年内,我们关于基础物理的知识进展中,没有哪个富有成效的想法没有他的贡献。”[3]

盖尔曼少年天才,非常自负,锋芒毕露,惹恼过不少人,包括前面说过的派斯。他的想法多,但是写文章慢,特别是害怕发表错误文章。

所以会有别人抢在他前面发表类似想法的情况。在弱相互作用宇称不守恒发现之前,李政道和杨振宁曾经尝试过用所谓宇称双重态来解决θ-τ之谜,后来当然知道这是错的。盖尔曼也有类似的想法,但是没有发表。看到李和杨的文章(发表在4月1日),盖尔曼开始攻击他们。戈德伯格(也是杨振宁的同学)劝他,你不会因为写在笔记本上的想法得到功劳。李和杨知道后,写信警告盖尔曼。盖尔曼道歉。李和杨回信接受盖尔曼的道歉[3]。

1950年代后期,在普林斯顿高等研究院的物理教授会上,奥本海默说他考虑邀请盖尔曼加入研究院。杨振宁说,如果盖尔曼来,他就离开。奥本海默不再提这件事[6]。这不过是小插曲。盖尔曼对费曼和杨振宁虽然都各有某种竞争心态,但认为他们在理论物理上很强。笔者注意到,盖尔曼在演讲中提到杨-米尔斯理论时,喜欢说“我的朋友弗兰克·杨……”1989年,李政道参加了在帕萨迪纳的盖尔曼60寿辰学术庆祝会。

2002年,盖尔曼参加了在清华大学的杨振宁80寿辰学术庆祝会。2009年,杨振宁参加了在新加坡的盖尔曼80寿辰学术庆祝会。

得知盖尔曼去世的消息后,杨振宁先生在给笔者的邮件中写道:“健在的90岁以上的物理学家:斯坦伯格、杨、安德森、李。???”

参考文献:

[1] 施郁. 人生危机催生中微子假说,南方人物周刊2019年第12期,2019年第12期,58-63. https://mp.weixin.qq.com/s/0BI0SkXmbY5kMb5w2PJEEg

[2] Johnson G. Strange Beauty.

[3] 施郁. 规范理论一百年,知识分子,2019年3月31日. https://mp.weixin.qq.com/s/YmFQRDGnb4vE8DWygCF5WQ

[4] 施郁. 费曼百年(下). 知识分子,2018年11月18日.

[5] Gell-Mann M. Interviewed by S. Lippincott.

[6] Yang C N. Selected Papers with Commentary II.

UUID: a31e4e1c-531d-47a3-9ee6-0e06887b482e

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/知识分子公众号-pdf2txt/2019年/2019-05-26_最顶尖的天才又走了一个,杨振宁惋惜纪念盖尔曼.txt

是否为广告: 否

处理费用: 0.0116 元