过渡金属硫化物中伊辛超导电性研究取得新进展

来源: Nature Communications

发布日期: 2019-05-03

中国科学院物理研究所/北京凝聚态物理国家研究中心固态量子信息与计算实验室吕力研究员团队在二维层状过渡金属硫化物MX2中发现了新型伊辛超导体电性,这种电性由各向异性自旋-轨道耦合导致,且面内上临界磁场呈现出显著的两度对称性,为强磁场中超导电性的应用提供了新途径,也为拓扑量子计算研究提供了新的实验平台。

二维层状过渡金属硫化物MX2(M代表Mo,Nb,W;X代表S,Se,Te)中的强自旋-轨道耦合作用与结构的多样性赋予这类材料许多新奇的物理性质,如在少数层1Td相的WTe2中观测到量子自旋霍尔效应,在少数层2H相的MoS2与NbSe2中观测到伊辛超导电性等。这些发现使得MX2材料成为当前凝聚态物理学和材料科学研究的一个热点。

通常BCS超导体的上临界磁场是不会超过泡利顺磁极限的,因为一旦超过这一极限,两个自旋相反电子之间的s波配对就不能维持了。但在2H-MX2材料的晶体结构中,面内中心反演对称性的破缺导致伊辛自旋-轨道耦合的出现。此时,库伯对中电子的自旋方向会被钉扎在面外,使得面内的上临界磁场可以远超泡利极限,达到几十甚至上百特斯拉。这种超导电性被称为伊辛超导,其特有的性质为强磁场中超导电性的应用提供了新途径。

此外,最近有理论认为可以利用伊辛超导体来构造马约拉纳费米子,为拓扑量子计算研究提供新的实验平台。中国科学院物理研究所/北京凝聚态物理国家研究中心固态量子信息与计算实验室吕力研究员团队近年来一直从事拓扑物态方面的研究。从2015年底,团队成员刘广同副研究员开始关注利用二维过渡金属硫化物开展拓扑超导研究。

通过与新加坡南洋理工大学刘政(Zheng Liu)教授合作,近年来在高质量少数层MX2样品的研究方面取得了一系列进展,构建了这一材料家族生长、形貌、结构和物性数据的“图书馆”,相关成果先后发表在Adv. Mat. 29, 1603471 (2017)(被选为封面文章)、Nat. Commun. 8, 394 (2017)、以及Nature 556, 355 (2018)上。

最近,他们在少数层高质量MoTe2样品的物性研究方面又取得了新的进展,在Td相的MoTe2样品中发现了一种由各向异性自旋-轨道耦合导致的新型伊辛超导体电性。与已经发现的面内各向同性的伊辛超导体不同,该新型超导体的面内上临界磁场(Hc2,∥)呈现出显著的两度对称性,并且在不同方向均超过泡利极限。这是在实验上首次观察到面内各向异性的伊辛超导电性。

理论计算表明,这种现象的出现是由于Td相特殊的晶格对称性诱导出了一种独特的自旋-轨道耦合作用g=(gx,gy,gz)。一方面,x方向上面内的镜面对称破缺导致了面外的伊辛自旋-轨道耦合作用gz,使得我们观测到了以往发现的伊辛超导的Hc2,∥增强现象。另一方面,面外镜面对称破缺导致了面内各相异性的自旋-轨道耦合作用(gx与gy)。这就是实验上观测到Hc2,∥面内两度对称性的原因。

这一发现将有助于加深对过渡金属硫化物中新奇超导现象的认识,有助于促进相关材料超导自旋电子学器件的应用研究。

UUID: 11d206d8-d819-4c21-8522-e53ef3f9fe18

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院物理所公众号-pdf2txt/2019/中科院物理所_2019-05-22_进展 | 过渡金属硫化物中伊辛超导电性研究取得新进展.txt

是否为广告: 否

处理费用: 0.0045 元