水有许多奇特的性质,比如:固态水的密度比液态水小,而4℃的水密度最大;水的比热容和蒸发热都远高于其它常见的液体;氢离子在水中扩散的速度远高于其它离子等等。科学家们一直都在试图解开这些谜团,然而至今我们对水的了解都不甚全面,比如追踪液态水中单个水分子的行为就是一个难题。
由于对液态水和冰的光谱研究需要在宏观尺度下进行,每一次研究的对象都有无数个水分子(>10^15)同时被观测,这也就导致单个水分子的性质难以观测。
4月19日,耶鲁大学学者发表在Science上的研究“Deconstructing water’s diffuse OH stretching vibrational spectrum with cold clusters“第一次观测到了在较大较复杂的氢键网络中多种不同结构的单个水分子的振动光谱。
水的特殊性质都离不开存在于水分子之间的氢键。在室温下液态水中的水分子大多都会彼此之间形成氢键,仿佛一张三维的大网。但是氢键并不能完全限制水分子的活动,每时每刻水分子都在快速地移动和重排,氢键也在不停地断开和重新生成。这些过程的时间尺度在数百飞秒(fs, 10^-15s)到数十皮秒不等。这么快的运动也就导致了给水分子照相异常困难。
光谱一直以来都是研究微观世界的重要手段,上世纪末飞秒激光光谱的飞速发展和在物理化学领域的应用打开了通往观测微观世界超快图景的大门。超快激光可以捕捉近乎静态的瞬间。本世纪初,飞秒泵浦光谱(Fs-Pump probe),二维振动光谱(2DIR)和合频共振光谱(SFG)等技术的发展又大大促进了对于水以及水界面结构和动力学的研究。
如果将单个的水分子从它的氢键网络中剥离,它的行为就会发生巨大的改变,好比将人群中的一个人与周围的人割裂开来,却试图研究个体在群体中的行为表现。那么如何让水分子不离开它在氢键中的伙伴,但又能清晰的观察到它而不是它的邻居们的特征呢?
这时我们就要求助于同位素标记了。如果将一个轻水分子(H2O)放在一群重水分子(D2O)之间,水分子感受到的来自身边分子的互动几乎不变,然而重水和水的振动频率却大不相同,这时如果观测轻水的振动光谱我们就可以清晰的观测到来自轻水分子的信号。
来自耶鲁大学的团队利用电喷雾电离法(ESI,John Fenn 2002年诺贝尔化学奖)将20个水分子的氢键网络从液态水中分离并包覆于铯离子之上。研究人员利用质谱可以筛选出特定质量(特定水分子数的)团簇并对其进行同位素标记,最终取得含有19个重水分子和一个轻水分子的团簇,进而利用带电团簇易于操纵追踪的性质为团簇中的单个水分子分别“照相”。
本研究首次直接证明了在水振动光谱中难以分辨的宽峰下隐藏着许多特征各异的水分子。从而证明了液态水宽峰本质上是无数处于不同位置的窄峰的叠加,而拥有两个窄峰的单个水分子也可以快速运动变换身份和特征,从而在不同的位置展现出光谱特征。
长久以来,对水进行计算的理论和模型并没有很好的微观实验标杆来进行校准。尽管量子计算化学和超级计算机算力在近三十年内有着跨越式的发展,但对于含有水和氢键的体系的理论计算一直以来都难以准确的还原光谱实验中所观测到的性质,更好的实验标杆可以为理论研究提供极大的帮助。
本研究为界面水光谱的研究和液态水及界面上的物理过程和化学反应的建模提供了重要的微观参考,对于对水进行理论研究建模的科研工作者具有重要意义。这一研究为校准理论模型提供了清晰准确的直接标尺,也为利用水模型研究如光合作用,雾霾表面化学等重要化学反应的科学家们提供了搭建更准确模型的可能。