人类首张黑洞照片,怎么拍的?
如果要评选出2019年最有价值和最受期待的照片,那么非上面这张照片莫属。这是5500万光年外的大质量星系M87中心超大质量黑洞的黑洞阴影照片,也是人类拍摄的首张黑洞照片。它是黑洞存在的直接“视觉”证据,从强引力场的角度验证了爱因斯坦广义相对论。
照片于2017年4月拍摄,2年后才“冲洗”出来。2019年4月10日,由黑洞事件视界望远镜(Event Horizon Telescope,EHT)合作组织协调召开全球六地联合发布。那么,这张黑洞照片是如何拍出来的呢?
看不见的黑洞如何证明它存在?一百多年前,爱因斯坦提出广义相对论,将引力视为时空扭曲的效应。他的方程预言,一个小而重的物体能隐藏在事件视界(event horizon)之内,在视界内,其引力强大到连光都无法逃脱,这个物体就是黑洞。几乎所有的星系中心都存在黑洞,在那里它们可以成长到太阳质量的数百万或者数十亿倍。
在这次拍照前,主要有三类代表性证据可以表明黑洞存在:
1. 恒星、气体的运动透露了黑洞的踪迹。黑洞有强引力,对周围的恒星、气体会产生影响,可以通过观测这种影响来确认黑洞的存在。
2. 根据黑洞吸积物质(科学家们把这个过程比喻成“吃东西”)发出的光来判断黑洞的存在。在黑洞强引力的作用下,周围的气体就会向黑洞下落,在距离黑洞几百到几万倍事件视界的地方形成一个发光的腰带——吸积盘。
3. 通过看到黑洞成长的过程“看”见黑洞。LIGO探测的五次引力波都对应了恒星级质量黑洞的并合事件,见证了更小的黑洞借助并合成长为更大黑洞的过程。这类引力波的发现,也是我们推断黑洞存在的证据之一。
以上都是间接的证据,而要想直接“看”到黑洞,天文学家希望拍到类似的照片。广义相对论预言,因为黑洞的存在,周围时空弯曲,气体被吸引下落。气体下落至黑洞的过程中,引力能转化为光和热,因此气体被加热至数十亿度。黑洞就像沉浸在一片类似发光气体的明亮区域内,事件视界看起来就像阴影,阴影周围环绕着一个由吸积或喷流辐射造成的如新月状的光环。
给黑洞拍照不止是为了“眼见为实”。给黑洞拍照,有三个科学意义:
1. 对黑洞阴影的成像将能提供黑洞存在的直接“视觉”证据。黑洞是具有强引力的,给黑洞拍照最主要的目的就是在强引力场下验证广义相对论,看看观测结果是否与理论预言一致。
2. 有助于理解黑洞是如何吃东西的。黑洞的“暗影”区域非常靠近黑洞吞噬物质形成的吸积盘的极内部区域,这里的信息尤为关键,综合之前观测获得的吸积盘更外侧的信息,就能更好地重构这个物理过程。
3. 有助于理解黑洞喷流的产生和方向。某些朝向黑洞下落的物质在被吞噬之前,会由于磁场的作用,沿着黑洞的转动方向被喷出去。以前收集的信息多是更大尺度上的,科学家没法知道在靠近喷流产生的源头处发生了什么。如果现在对黑洞暗影的拍摄,就能助天文学家一臂之力。
给黑洞拍写真,要跨过三座“大山”。给黑洞拍照难不难?肯定难。不然我们不会到今天才拍出第一张照片。在这个过程中,有三座难以逾越的大山:黑洞阴影的“小”、技术要求极高的观测波段、复杂的数据处理。而面对这些难点,天文学家们发挥智慧,拿出了不少应对的妙招。
解决黑洞阴影的“小”,需要两个靠谱选择。为了解决这个问题,需要保证两个“靠谱”——拍照模特靠谱、望远镜的实力靠谱。选择哪些黑洞当拍照模特?
黑洞阴影实际看起来的大小主要与两个因素有关:实际的大小、黑洞到地球的距离。而黑洞阴影的实际大小与黑洞的质量有关,黑洞质量越大,黑洞阴影越大;再综合距离因素,你会发现选择临近的超大质量黑洞是个明智之选。银河系中心的黑洞Sgr A*和星系M87的中心黑洞便是两个好模特。
给黑洞拍照:VLBI功不可没,望远镜实力不凡。拍摄黑洞照片所用到的望远镜的灵敏度和分辨本领很重要,这也是描述望远镜实力的两大要素。
灵敏度强调探测微弱射电源的能力;而分辨本领反映了区分天球上两个靠得很近的射电点源的能力,用刚刚能分辨的两点间张角theta来表示,theta与观测波长和望远镜口径有关,theta越小,表示分辨本领越高。两者均对射电望远镜的口径提出了要求,望远镜的口径越大,其灵敏度越高,分辨本领越高。除了与望远镜的口径有关,分辨本领还和而观测波段有关。
同样口径的望远镜,观测波长波长越长,theta越大,对应的分辨本领越低。
天文学家对高分辨率的渴求,并没有止步于射电望远镜单天线。甚长基线干涉测量(Very Long Baseline Interferometry; VLBI)技术解决了射电望远镜实现高分辨本领的难题。
所谓VLBI技术,就是当相隔两地的两架射电望远镜同时观测来自同一天体的射电波,根据各自独立的时间标准,将天体的射电波记录下来,然后再将这两个记录一起送入处理机进行相关处理,最终分析获取该天体的射电辐射强度和位置。要成像成功必须要求所有望远镜在时间上完全同步,当EHT的每个望远镜都能在时间上同步时,记录到的信号就能被完美地修正聚焦。如果镜面不稳定,譬如会振动的话,反射的光线将无法准确聚焦。
EHT利用氢原子钟来确保纪录的稳定性。原子钟能精准到每数亿年才误差一秒。
实现高技术观测波段:1毫米+高精度望远镜。根据理论预言,黑洞周围气体在1毫米附近的辐射强度最高,而且最关键的是,1毫米附近是个比较干净的观测窗口,被同步自吸收等的作用大大减弱,黑洞周围气体的辐射变得透明。2017年EHT观测Sgr A*和M87*所基于的窗口便是1.3毫米,未来还希望用0.8毫米。
既然理论预言甚至预言出的照片很早便存在,VLBI技术也并非近十年才有的,那为何黑洞照片现在才诞生呢?主要瓶颈其实在观测窗口:1毫米左右。这种对观测波段的极高要求,其实就意味着对望远镜性能的极高要求。要让EHT实现最佳性能,除了要使用VLBI技术,还有一点很重要:每个望远镜必须性能足够好。EHT的每架射电望远镜本质上就是一架大口径的抛物面天线,就像卫星天线锅。
为了保证射电望远镜的天线在观测波段内正常观测,天线在技术上有个门槛,加工精度必须足够高,其偏离抛物面的程度最多只能与观测波长相差5%。因此,可以预想,观测毫米波比观测厘米波所要求的天线加工精度更高,加工难度更大。大家也不难发现,参与EHT的八台望远镜有效口径大多为十几米,最大不过73米。
“冲洗”照片:复杂的后期数据处理分析。
在这次拍摄黑洞照片的过程中,多台设备同时观测和记录,然后将数据汇总到一起分析。2017年4月份的观测中,8个台站在5天观测期间共记录约3500 TB的数据(1TB等于1024GB,相当于500小时的高清电影)。因为数据量庞大得不可能靠网络传递,所以EHT用硬盘来纪录每个望远镜的原始观测数据,再把硬盘寄回数据处理中心。
超级计算机需要获取相同的信号到达两个望远镜的时刻差(时延)以及时延随着时间的变化快慢(时延率),校正射电波抵达不同望远镜的时间差,最后综合两个望远镜的位置信息、信号的强度以及上述两个参数——时延、时延率,就可以对该天体的射电辐射强度和位置进行分析。这个过程中涉及数据量之多,处理难度之大都是前所未有的。
即使现在人类的运算能力已经非常强大,这张照片还是花费了近两年时间“冲洗”——从2017年4月开始,科学家们用了近两年时间对这些数据进行后期处理和分析。终于,在今天(4月10日)发布了首张黑洞照片。
全球项目中的中国贡献。很多人关心,在为黑洞拍照的过程中,是否有中国科学家的身影。在这里,可以非常自豪地告诉大家,我们没有缺席。
我国科学家长期关注高分辨率黑洞观测和黑洞物理的理论与数值模拟研究,在事件视界望远镜(EHT)国际合作形成之前,就已开展了多方面具有国际显示度的相关工作。在此次EHT合作中,我国科学家在早期EHT国际合作的推动、EHT望远镜观测时间的申请、夏威夷JCMT望远镜的观测、后期的数据处理和结果理论分析等方面做出了中国贡献。
今天只是起点,未来将看到更多精彩。
参与此次EHT观测的上海天文台专家一致表示,对M87*黑洞的顺利成像绝不是EHT的终点站:一方面,对于M87*的观测结果分析还能更加深入,从而获得黑洞周围的磁场性质,对理解黑洞周围的物质吸积及喷流形成至关重要。另一方面,大家翘首以待的银河系中心黑洞Sgr A*的照片也要出炉了。
EHT项目本身还将继续“升级”,还会有更多的观测台站加入EHT,灵敏度和数据质量都将提升,让我们一起期待,未来看到M87*和Sgr A*的更高清照片,发现照片背后的黑洞奥秘。总之,人类既然已经拍到第一张黑洞照片,那黑洞成像的春天还会远吗?
写在最后。不论你看或不看,黑洞阴影就在那里;不论你拍或不拍,黑洞阴影就在那里。因为梦想,因为努力,因为坚持,我们终于第一次拍到了它,欣赏到了它的美,更见识了科学之真和美。不用说,这是一曲国际合作演奏的完美乐章,中国科学家在这里演奏出美妙和谐的音符,作出了重要的贡献。未来,中国和中国科学家还将以更好的科学想法、更精湛的水平为类似SKA等国际大科学项目贡献出更美妙的篇章。