帕乔利:上帝、数学与金钱

作者: 刘钝

来源: 科学春秋

发布日期: 2019-02-03

帕乔利是文艺复兴时代的意大利数学家,他的著作《算术、几何、比与比例集成》被认为是现代会计制度的开山之作,系统总结了当时的商业算术和复式簿记方法。他在数学和艺术之间架起了桥梁,与达芬奇等人有过密切的合作。帕乔利的工作为后来的数学研究者奠定了基础,并在科学与商业的发展中起到了重要作用。

德巴巴里《帕乔利肖像》(1495)现藏那不勒斯卡波迪蒙特宫。笔者在前文“独孤信印与秦汉酒骰的几何学”中已经提到上面这幅图,它是意大利画师雅可布·德巴巴里(Jacopo de’Barbari, c. 1460-before 1516)的作品。在群星璀璨的文艺复兴盛期,德巴巴里算不上一流画家,但他的这幅《帕乔利肖像》却非常有名。

前文只涉及画面左上角的那个水晶多面体,本文则要谈谈画面右下角那个多面体,更多的关注则是画面中央的人物——文艺复兴时代意大利的数学家帕乔利。

方济各会修士身着方济各会修士袍的人就是卢卡·帕乔利(Luca Pacioli, 1445-1517),他身边的年轻人是学生与庇护人、热爱科学和艺术的第三代乌尔比诺公爵——蒙泰费尔特罗家族的盖多巴尔多(Guidobaldo da Montefeltro, 1472-1508)。据说盖多巴尔多曾向帕乔利学习数学,画面上的道具也多与数学有关。

帕乔利生于托斯卡纳的桑塞珀尔克罗(Sansepolcro),在佛罗伦萨市东南约80公里、佩鲁贾北面约50公里,文艺复兴时代的另一位艺术大师兼数学家弗兰切斯卡(Piero della Francesca, c. 1415-1492)也诞生于此。关于帕乔利的教育背景与知识来源人们所知甚微,推测他曾向弗兰切斯卡学习几何与透视原理。

还有人认为弗朗切斯卡为乌尔比诺公爵所作的祭坛画中,圣母右边圣方济各(Francis of Assisi, 1182-1226)的形象,就是以年轻的帕乔利为模特的。

1464年,不到20岁的帕乔利来到威尼斯,受雇于一位富有的商人艾尔托尼奥(Ailtoniode Rompiasi),担任其三个儿子的家庭教师,很可能还兼任账房先生。

威尼斯是当时商业最繁华的城市,帕乔利关于商业簿记的知识大概就与这段经历有关。1470年帕乔利前往罗马,在著名建筑师同时也是艺术家和数学家的阿尔伯蒂(Leon Battista Alberti, 1404-1472)工作室学习。他于1473年加入了方济各会,此时被年长的老乡弗朗切斯卡当作模特是极有可能的。

在研修神学的同时,帕乔利开始在意大利各地旅行,以修士身份在佛罗伦萨及多处布道,亦曾担任过地区教长,同时他也在不同的地方讲授数学与军事科学,包括佩鲁贾、佛罗伦萨、罗马、威尼斯和那不勒斯。

1497年一个新的主顾找上门来,那就是权倾一时的米兰大公、斯福尔扎家族的卢多维科(Ludovico Sforza, 1452-1508)。正是在卢多维科的米兰宫廷里,帕乔利结识了达芬奇并向他讲解数学;作为回报,后者为他的《神圣比例》制作了60多幅版画插图。两位杰出学者在米兰的因缘际会为科学与艺术联姻作了最好的注解,直到1499年法王路易十二率军侵入米兰驱逐卢多维科,他们俩人又结伴逃往佛罗伦萨。

1500年左右,帕乔利在比萨大学讲授欧几里得几何学,翌年兼任博洛尼亚大学教授。1514年,刚升教皇圣座的利奥十世(Pope Leo X,1475-1521)任命他为罗马大学(La Sapienza)数学教授,这一职位相当于教廷数学家,是当时天主教世界最高的数学荣誉。他的最后几年是在家乡度过的,1517年6月18日在桑塞珀尔克罗去世。

让我们回到那幅双人肖像:画中的帕乔利右手拿着一根细棒指向画板上的几何图形,画板的前缘可以辨认出“欧几里得”(EVCLIDES)的字样;他的左手平放在一本摊开的书上,食指指向书中的某一段落,一般认为这本书就是他的杰作《算术、几何、比与比例集成》(Summa de arithmetica,geometria,proportioni et proportionalita,以下简称《集成》),此书乃是题献给盖多巴尔多的。

值得注意的是,画面左上方悬着一个类球状的水晶体,其表面由18个全等的正方形和8个全等的正三角形构成,西文学名rhombicuboctahedron,可译作小斜方截半立方体,更准确的术语应该是48等边半正多面体;与之相对,画面右下角那个方盒状物体的上面,有一个正12面体模型,其表面是12个全等的正五边形。

正12面体在西方文化中往往指代地球之外的星空,大概是由数字12联想到黄道十二宫,也就是希腊人从古代巴比伦那里学来的划分星空的坐标系统。在帕乔利面前摆放一个正12面体模型,似乎暗示他与上帝有关。

罗马作家普罗克鲁斯(Proclus,412-485)说公元前六世纪的毕达哥拉斯学派已经研究过正多面体,不过在欧几里得《几何原本》的一个早期版本中,注释者提到毕达哥拉斯学派仅仅知道正方体、正4面体和正12面体。

著名的荷兰代数学家范德瓦尔登(Vander Waerden,1903-1996)写过一本关于西方科学萌芽的书《科学觉醒》,内中提到考古学家曾在意大利帕多瓦附近发掘出一个滑石制成的正12面体模型,其年代早于公元前500年,时间和地点都与毕达哥拉斯学派活动的轨迹相近。

柏拉图(Plato,c.427-347 BC)在《蒂迈欧篇》中,将古代爱奥尼亚学派的元素学说与自己珍视的几何学结合起来。

书中提到构成世界的四大元素对应四种正多面体:火对应正4面体,土对应正6面体,气对应正8面体,水对应正20面体;又将不同的物理属性赋予这些元素或立体,例如火与正4面体对应小、轻、热、尖锐,水与正20面体对应大、圆、柔,土与正6面体对应重、稳、冷、坚硬,气与正8面体居于火、水之间,以此来解说地上万物的生成与变化。

书中还提到第五个立体,并称“造物主用其代表作为一个整体的宇宙的形状(to represent the shape of the Universe as a whole)”,但是没有为它命名,也没有提到它的形状;有的注释者则将同一句话译成“神用它来界定宇宙(that which God used in the delineation of the universe)”。

后来亚里士多德(Aristotle,384-322 BC)借用前辈描述纯净的火或者气的词aether,创造了一个与正12面体对应的神性元素——以太,也就是组成星空及星体的元素。至此五种正多面体都有了对应的元素,而“以太”在现代物理观念的演进过程中扮演了甚为关键的作用,那是后话。

据说柏拉图学派的泰阿泰德(Theaetetus,c. 417 BC-369BC)最早给出五种正多面体的数学描述并证明只有五种凸的正多面体,后者正是欧几里得《几何原本》最后一个命题(卷13命题18)的推论。杨振宁先生说:“希腊人发现了五种规则立体,它们是高度对称的。这使某些权威认为,欧几里得汇编《几何原本》实际上就是为了证明这五种规则立体是仅有的规则立体。

”以只有五种正多面体的结论为《几何原本》谢幕这一事实,或许使某些“辉格立场”的当代数学家认为:欧几里得汇编《几何原本》的终极目标,就是为柏拉图的宇宙观提供一个可靠的数学基础。这一说法很动人,但是未必符合历史的真实情况。

帕乔利还有一些其他作品。他整理翻译过欧几里得的《几何原本》,其底本是13世纪意大利数学家卡姆潘努斯(Campanus of Novara)依据阿拉伯文译成拉丁文的早期译本。

博洛尼亚大学图书馆还保存着他的一份长达300多页的数学遗稿,内容涉及数学游戏和相关的诗句和谚语等。梵蒂冈图书馆则收藏了他另一部厚达600多页的手稿(Ms.Vatican Library,Lat.3129),是他在佩鲁贾大学教授数学的讲义。2006年,他的一部有关象棋的遗稿(De ludo scacchorum)被人发现了,两年后在其家乡桑塞珀尔克罗出版。

1878年,帕乔利家乡的市政当局在他出生的房屋附近立了一块大理石铭牌,上面镌刻着如下的文字:卢卡·帕乔利,达芬奇与阿尔伯蒂是其朋友和顾问,他将代数引向科学又应用于几何,他讲授复式簿记,他的工作成为后来数学研究者的基础与规范。为了这位伟大的市民,桑塞珀尔克罗人民在令人感到难堪的370年沉默后,立此石碑以志纪念。现在这块铭牌已被移至桑塞珀尔克罗市立博物馆对面的墙上。

1994年,为了纪念《集成》出版500周年,人们又在市中心建造了一座大理石雕像:身着方济各会修士袍的帕乔利手捧着他的《集成》,基座上则有“卢卡·帕乔利——《集成》——1494~1994”等字。

回到开篇那幅帕乔利的画像,笔者最早是在一本名为《数学简史》的小书中见到的,时间是1970年初,当时还在内蒙插队的我很纳闷作者为什么要在一本篇幅不大的书中选用这幅画,而且是唯一的插图,难道帕乔利的数学成就比欧几里得、牛顿、欧拉与高斯们还要高吗?

后来有幸进入科学史领域,了解了该书作者斯特洛伊克(Dirk Jan Struik,1894-2000)的生平和立场,原来他是以马克思主义的历史观来写作的,这就可以领悟他钟爱《帕乔利肖像》的原因了。斯特洛伊克重视社会环境特别是经济基础对近代科学诞生的意义,而帕乔利详尽描述的复式簿记和商业算术,恰好为这一观点提供了注脚。

UUID: 4169e4dd-c3f6-48d2-a434-037c8db4ba08

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/知识分子公众号-pdf2txt/2019年/2019-02-03_帕乔利:上帝、数学与金钱左图右史.txt

是否为广告: 否

处理费用: 0.0249 元