对于丢番图的生平,人们知之甚少。唯一的简历是从《希腊诗文集》中所得。这本由古希腊语法学家麦特罗尔所辑的著作中,记录有46首和代数问题有关的短诗,其中就包括数学爱好者津津乐道的“丢番图的墓碑题”。由于《希腊诗文集》是公元500年前后的遗物,加上史学家对一些学者书信著作中相关信息的研判,大致可以推断出丢番图生活于246~330年。
这道有趣的墓碑题,用诗歌的形式巧妙、含蓄地叙述了丢番图的一生:过路的人啊!这里埋葬着丢番图,请计算下列数目,便可知他一生经过了多少个寒暑。他生命的1/6是幸福的童年;又过了一生的1/12他的两颊长出了细细的胡须;再过了一生的1/7,他结婚建立了幸福的家庭;婚后5年有了可爱的儿子,可惜儿子的寿命只有父亲的一半;晚年丧子真是可怜,儿子死后,老人在悲痛中度过4年就与世长辞。
请你算一算,丢番图活到几岁,才与死神见面?
要想知道丢番图活到多大岁数,就得解答这则数学谜语。用现代数学的思路分析解答并不困难,常规策略仍是按量率对应的分数应用题,或假设未知数的方程思路解答,具体步骤不作赘述,留给有兴趣的读者探究。在此仅介绍一种另辟蹊径、别具一格的当代巧解。
题目中提到,“丢番图生命的1/6是幸福的童年”“又过了生命的1/12”“再过了一生的1/7”,由此可知,丢番图的年龄既是6的倍数,又是12的倍数,还是7的倍数,因为12的倍数自然就是6的倍数,这就说明,丢番图的年龄是12和7的公倍数,即可能是84、168、252……根据生活常识,人的寿命目前不可能达到168岁乃至252岁……因此,满足要求的只有一种可能,即丢番图活到了84岁。
不难看出,这种解题技巧极为简洁实用,迅速摒弃了无关信息,一下子抓住题目的关键,运用简单的数学知识和生活经验,方便快捷地解决了问题。当然,考虑到古希腊的数学背景和基础,无论常规思路还是巧妙策略都无从谈起,因此,这道别出心裁的“墓碑题”被作为难题记录和传播并不足为奇。
丢番图对代数学的发展起到了极其重要的作用,他所撰写的《算术》就是一部划时代的著作,在数学史上的地位可与《几何原本》相提并论,他本人因而获得“古代代数学之父”的美誉。其中的数学观对后来的数论学者影响巨大,以其名命名的“丢番图方程”(不定方程),至今仍是数论研究的重大课题。
从另一个角度看,《算术》一书也可以归入代数学的范围。代数学区别于其他学科的最大特点是引入了未知数,并对未知数加以运算。就引入未知数、创设未知数的符号以及建立方程的思想(虽然未有现代方程的形式)这几方面来看,丢番图的《算术》完全可以算得上是代数学。
希腊数学自毕达哥拉斯学派后,兴趣中心在几何,他们认为只有经过几何论证的命题才是可靠的。为了逻辑上的严密性,代数也披上了几何的外衣。一切代数问题,甚至简单的一次方程的求解,也都被纳入了几何的模式之中。直到丢番图出现,才把代数解放出来,完全脱离了几何的限制。丢番图认为,代数方法比几何的演绎陈述更适宜于解决问题,因而在解题过程中显示出高度的巧思和独创性,在希腊数学中独树一帜。
丢番图对算术理论有着深入和独特的研究,以解题技巧高超著称。下面介绍的就是丢番图巧妙解题的一则小故事。丢番图有一位得意门生名叫帕普斯,他从很小的时候起就跟随丢番图学习数学。一天,帕普斯遇到一个难题:有4个数,把其中每3个数相加,其和分别为20、22、24和27,求这4个数。这个问题看起来简单,解答起来却比较繁琐。
因为题中有4个未知数,按照通常列方程解应用题的方法,必须设出4个未知数,列出4个方程,得到一个4元一次方程组,然后再解方程组。可在具体求解时帕普斯被这个方程组搞得昏头昏脑,陷在算式的沼泽里无法自拔。在当时相对落后的文化背景和数学工具的限制下,帕普斯束手无策也在情理之中。无奈之下,他只得向老师请教,询问能否用简便的方法解答这个问题。丢番图看后笑着回答:“行啊!行啊!”随即给出了一个极为简单的解法。
丢番图也是假设未知数列方程解答,只是他的设法出人意料、一反常规,不去详细分设四个未知数,而是假设这四个未知数之和为x。于是,这四个数就分别为x减去其余三个数之和,即分别为x-20,x-22,x-24和x-27。由此可列方程:(x-20)+(x-22)+(x-24)+(x-27)=x解得:x=31,最终得出这四个数分别为11,9,7,4。
从上面的故事不难看出,丢番图的解答巧妙之处在于,他没有纠缠在常规思路中,而是采用变通思维进行处理,这充分体现了丢番图作为数学家善于打破思维定势的能力。丢番图一直推崇并认为代数方法比几何的演绎陈述更适宜解决问题,在解答过程中更能显示出数学智慧和机巧。
比如(a+b)2=a2+2ab+b2在欧几里得的《几何原本》中是一条重要的几何定理,而在丢番图的《算术》中只是简单代数运算法则的必然结果,因此,充分体现丢番图数学思想的《算术》几乎就是纯粹的代数著作。代数由此自成体系,这也是丢番图对人类文明做出的巨大贡献。尽管丢番图谜一般的生平模糊不清,但他对数学的贡献毋庸置疑,“古代代数之父”的地位不可动摇。
对于这位古希腊杰出的数学家,我们理应心怀敬意,铭记于心。