生命是什么?在生物科学界流传着“物理学家累了就来生物界玩一玩”的调侃。确实,现今学科之间密不可分,生物学的发展对特定物理技术的需求也越大。但是这样化学家却不满意了?
1943年,物理学家薛定谔在都柏林三一学院的一系列演讲中探讨了这个问题。这位著名的量子力学先驱委以了科学家一项新的使命:开始用物理学中的工具和直觉来解释生物的活动。他的想法后来被整理成书,被广泛认为是物理学和生物学的成功结合,并推动了分子生物学革命。
薛定谔在书中阐述了许多关于生命的基本问题,例如,生物体如何传递遗传物质,才能够世世代代生生不息?从物理学的角度来看,生命是什么?《生命是什么?
》一书的出版引发了一场跨学科的对话,吸引了克里克(Francis Crick)、本泽尔(Seymour Benzer)、威尔金斯(Maurice Wilkins)等人进入生物学领域。就在薛定谔提出自己的构想后的十年内,DNA的结构就被发现了。而到了1961年,遗传密码也被破译了。
然而,有科学家认为,这次物理学和生物学的结合忽略了化学。遗传物质是什么?生命是什么?这个问题在很大程度上,其实是对需要什么样的化学物质来维持世代遗传的探索。薛定谔的答案是,生命细胞中最重要的部分——染色体纤维,也就是如今众所周知的储存基因的地方,必然是一种非周期性晶体。所谓非周期性晶体是指一种原子非随机排列的结构,它为细胞编码一套稳健的“密码”,但缺乏晶体结构的规律性。
在1987年薛定谔诞辰100周年之际,鲍林对这本书的评价颇有一丝不耐烦。他写道:薛定谔没有意识到关于生命本质的真正问题,这个问题便是,生物独特性是如何实现的;一个分子结构可以编码一套密码,这没什么大不了,真正稀罕的是编码是如何实现的。分子结构生物学的另一位先驱马克斯·佩鲁茨(Max Perutz)对此同样不屑一顾。佩鲁茨问道,为什么薛定谔不把这种非周期性晶体直接称作聚合物呢?
或者谈谈在写这篇文章的时候就已经知道的事实——基因的这种神秘作用是通过对酶的编码产生的?佩鲁茨抱怨道,“书中正确的内容均不是原创,而大多数原创的内容即使在成书的年代也是不正确的”。
这些批评有些是有道理的。从《生命是什么?》这本书中,我们会得到这样的印象:薛定谔将生物细胞看作原子组织的一场令人困惑的阴谋——就好像一堆粒子会自发地组装成一辆法拉利——而忽略了分子结构这一中间领域,也就是化学领域。
这或许与薛定谔自己的知识传承有关。在玻尔兹曼的阴影下,薛定谔在维也纳接受教育。在分子层面上,他吸收了统计随机性的语言,这种语言似乎很难接受分子作为明确定义的对象。量子不确定性也只是增加了分子世界的模糊图像。
在很大程度上,化学可以突破物理学与生物学结合时遇到的问题。
鲍林正确地指出了,与其纠缠薛定谔关于需要“新的物理学定律”来解释生命的推测,不如冷静而勤勉地研究特定分子如何相互作用以产生细胞的生化、代谢途径。假如克里克和沃森(James Watson)在1962年因发现DNA结构获得的是化学领域的诺贝尔奖,而非医学领域,那么就能强有力地传递出一个非常恰当的信息。(佩鲁茨本人因为对酶结构的研究与John Kendrew一起,获得了当年的诺贝尔化学奖。)
幸好9月初在都柏林三一学院举行的庆祝薛定谔工作的会议上,诺贝尔奖得主Ben Feringa谈论的是“化学的未来”,包括另一位诺贝尔化学奖得主Ada Yonath、研究CRISPR的先驱张锋在内的演讲者都将分子作为核心话题。然而,《生命是什么?》在今天有着更深层次的共鸣。如果生命只是一系列令人眼花缭乱的分子间相互作用,它就会消失于复杂性之中。一些分子生物学家似乎想要这样。
但薛定谔暗示,一定存在一个包罗万象的原理来维持那些失衡的秩序,而DNA序列只是维持生命的一部分。