生物钟已经被证明深度参与人体的健康和医学,包括显著影响心脏手术和癌症治疗后的康复效果等。最近,AI算法被用到了生物钟的研究中,帮助科学家更有效地读取人体内在的生物钟信息。
生物钟不仅与物种进化息息相关,而且也与我们人类的身体健康密不可分。在生物钟的调控下,人体中的代谢、内分泌,以及个体行为都呈现着昼夜周期。近年来的研究进一步表明,哺乳动物的生物钟调控着基因组中高达50%的蛋白编码基因,这一发现在人体生理学及药理学中有着广泛的应用前景,并促进了新兴的生物钟医学(circadian medicine)发展。
生物钟医学,旨在基于人体生物钟的研究进而开发出更安全、高效的疾病治疗方案。在近期的研究中,已有科学家发现,生物钟显著影响着心脏手术和癌症治疗后的康复效果等。
尽管如此,生物钟的时间效应在医学实践和药物开发中经常被忽视。一个重要的原因是我们难对人体样本进行时序(time-course)取样,这样也就无法对人体的生物钟调控的分子机制进行深入研究。生物钟研究所使用的传统模式对于人体研究是不切实际的。我们很难想象连续24~48小时对人体多个组织进行多样点的时序取样,并分析各个基因、蛋白、代谢分子等随时间推移而产生的周期性变化。
本周三,美国辛辛那提儿童医院的一项工作为系统分析人体生物钟调控的分子机制提供了新的思路。Hogenesch实验室运用当下最流行的机器学习(machine-learning)或AI技术为基础的CYCLOPS算法,选取了来源于632位捐献者的13类组织样本,在没有取样时间信息的条件下重构了这些样本的取样顺序。通过对时序重构的组织的解析,研究者发现基因的周期性表达在人体中普遍存在。
在这些周期性表达的基因中,有近千个基因编码的蛋白为药物靶向分子,参与药物转运或药物代谢。这一研究为昼夜节律在医学中的应用提供了宝贵的资源,并提示了时间维度对于药物治疗效果的重要性。
然而,将生物钟医学应用于人类疾病的诊疗仍面临着另一个亟待解决的问题,即如何准确读取人体内的生物时钟信息。人体内在的生物钟与其自身所处的外在24小时的周期性变化环境有可能不契合(例如时差、倒班、手机等现代化电子产品的过度干扰),造成人体不适或者危害健康。
今年年初,张二荃实验室在PNAS杂志报道了一种基于光纤记录的方法,长程、实时检测活体实验动物的脑钟基因表达。该系统能够很好地在动物身上监测生物钟,但由于其需将病毒导入报告基因、光纤插入大脑等侵入性(invasive)的特点,所以不能运用到人体生物钟的检测。理想情况下,人体实验应该采用非侵入性(non-invasive)的方法;且需尽可能减少取样次数和时间,降低受试者的痛苦和实验成本。
今年以来,有两个实验室独立在此方向实现了阶段性的突破:德国柏林Charité大学医学院Kramer实验室和美国西北大学Braun实验室各自发表了研究论文。
这两个工作与第一篇文章的思路基本一致,即运用AI技术,通过少量已知时相样品的学习掌握了十几个到几十个钟控基因的相对表达丰度,然后推广到检测人群,从而对真正的受试者仅采一个或两个时间点的血液样品,就可以基本判定其内在的生物钟状态,时相精度达到1~2小时。
总之,从今年的这三篇文章我们可以看到,研究者已经开始试图运用AI算法解决以前需要多时间点取样的问题,从而更加有效地读取人体内在的生物钟信息。
不同之处在于,第一篇文章专注于各组织器官中生物钟控制药物靶点的内在时相,从而推导出各类药物最佳服用时间点;后两篇文章则是运用人体血液中的单核细胞包含有生物钟信息的已知知识,帮助快速鉴定个体内在生物钟所处的时相。这些方法都运用到了RNA-seq为基础的基因表达组学信息,化耗时耗力的多时间点取样为多维多基因、单点(或双点)检测,降低了实际操作困难,为生物钟信息在临床上运用开辟了道路。