位于南极洲极点处的IceCube中微子天文台,由分布在1立方公里内的86串光传感器(光电倍增管)构成,每串60个,位于冰层下1450米到2450米。当高能中微子被冰俘获,产生带电粒子,穿过传感器阵列,将产生切伦科夫光,从而被探测到。2017年9月22日,冰立方探测到一个能量为290 TeV的中微子。作为对比,目前能量最高的加速器——欧洲核子研究中心的大型强子对撞机,只能把粒子加速到7 TeV。
冰立方的主要科学目标是通过中微子寻找高能宇宙射线的起源。为此,它建立了一个预警网络,对每个超高能中微子,实时重建出其方向,发布给其它望远镜,以便通过射电、光学、伽玛等波段观测对应的天体活动。观测到这个中微子后43秒,自动预警信息发出。4小时后伽玛射线协作网发出通知。
耀变体(Blazar)是活动星系核的一种,是由星系中央的巨大黑洞吸积大量物质而产生剧烈天文现象。黑洞将吸积物质的引力能,或者黑洞的转动能量,转化为强大的相对论喷流。如果喷流指向我们的视线,就构成耀变体。高能宇宙线的起源是百年之谜,我们既不知道它们从哪儿来,也不知道其加速机制。人们猜测它的来源可能包括中子星、伽玛射线暴、极端超新星、活动星系核等。
在耀变体喷流中,带电粒子可以加速到极高能量。
由于带电粒子受宇宙中磁场的偏转,当它们到达地球时,我们并不知道它们来自何处。也许它们已在银河系中旋转了几十圈,才飘飘荡荡地抵达地球。被喷流加速的质子或者核,与物质相互作用时能产生高能介子,最终衰变成光子和中微子,而中微子是不受磁场干扰的,能够直指源头。看到290 TeV的中微子,意味着耀变体喷流可以产生至少几万TeV的质子和核,很可能就是宇宙中能量最高的粒子的出生地。
实际上2016年冰立方就报道了活动星系核与高能中微子的关联,相关性为95%,从严格的科学标准来看并不够高,因此存在争议。在发现这个中微子后,冰立方重新检查了以前的数据,在这个方向上又找到一些中微子,使相关性达到了99.9%,约为3.5倍标准偏差。不过离科学发现的5倍标准偏差标准还差一点。
冰立方计划近期开始升级,将体积增大10倍。即便现在的结果不足以让人信服,未来也肯定能毫无争议地确定答案。
有意思的是,冰立方也可以在其中心一小块区域加大光传感器的密度,更准确地探测大气中微子,从而确定中微子的质量顺序(这个实验称为PINGU),而这是建设中的江门中微子实验的主要科学目标之一。假如PINGU实验得到高优先权的话,将是江门实验最有力的竞争对手。不过项目团队经过旷日持久的讨论,将优先权放在了扩大冰立方阵列上。毕竟,质量顺序有多个实验可以做,而冰立方只有一个。