所以,到底为什么不能除以零?

作者: 魏朗尔

来源: 果壳

发布日期: 2018-06-24

本文详细解释了为什么在数学中不能除以零,从小学的直观理解到中学的代数证明,再到大学的微积分和复数理论,逐步深入探讨了这一问题的数学原理和逻辑基础。

如果你问苹果手机上的Siri,“零除以零等于多少”,它会说:“假如你有0块饼干,要分给0个朋友,每个人能分到几块?你看,这个问题没有任何意义吧?甜饼怪会难过,因为没有饼干吃,而你也会难过,因为你一个朋友都没有。”抛开这个伤人的回答不论(有朋友谁会跟你聊天啊喂!),除以零确实是个困扰很多人的问题。十除以二等于五,六除以三等于二,一除以零是多少?小学数学就会告诉你,答案是不能除。

小学算术里,这个问题很简单。那时我们把除法定义成“把一个东西分成几份”,分成一二三四五六七份都很容易想象,但是你要怎么把10个饼干分给0个人呢?想象不出来嘛!所以不能除。敏锐的同学可能会想到,要是0个饼干分给0个人的话,本来无一物,好像就没关系了。但既然无物也无人,每个人分得多少都是可能的呀,根本无法给出一个单一确定的数值。这结论没错,但这都是凭直觉而得到的东西。你想象不出来,不一定意味着它没有。

现在我们开始接触最最基本的代数学——也就是解方程。我们发现,除法和乘法互为逆运算,所以问1 / 0 = ?就等于是解方程0 * x = 1好了,按照定义,0乘以任何数都是0,不可能等于1,所以满足x的数字不存在,所以不能除。同样,如果问0 / 0 = ?就等于是解方程0 * x = 0同理,任何数字都可以满足x,所以也不能除——无法确定一个单一的答案。

刚学微积分课程就会立刻接触到∞这个符号。

咦,这不就是“无限”嘛。我们都学了极限的概念了,那么我令b趋向于0,然后把a/b的极限定义为无穷,不行吗?这就立刻遇到一个问题,它的左极限和右极限不一样啊。b是从负的那头靠近0,还是正的那头?这一个是越来越负,一个是越来越正,碰不到一起去。这样的极限是没法定义的。因此,微积分课程里会反复说,虽然用到了∞这个符号,但是这只是代表一个趋势,绝对不是一个真正的数,不可参与运算。

那么吸取教训,我不用现成符号了,我直接定义 1 / 0 = w,w是个“无限大”的数,不碰什么极限,你总没话说了吧!然而,定义不是说来就来的,你虽然可以随便定义东西,但定义完了如果和现有的其他系统矛盾,那就不能用,或者很不好用。而我们面对w立刻就遇到了问题。首先,w要怎么放入基本的加减乘除体系里?1 + w等于多少?w - w等于多少?如果你造了一个数,却连加减乘除都不能做,那就没有用对吧。

如果你想把w当成一个数,那就没法和我们现有的实数兼容。所以我们在几乎所有场合下都只能宣布,不能除以0。既然我们之前说了个“几乎”,那就是有例外的——在个别奇葩场合下,可以。比如有一个东西叫做“复无穷”,它是扩充复平面上的一个点,真的是有定义的一个点。在这个特殊的规则下你可以写下 1 / 0 = ∞ 这样一个表达式。

这么做的原因就说来话长了,但它不是平常意义上的运算——比如你不能把0拿回来,不能写 1 = 0 * ∞。

所以,当我们说不能除以零的时候,理由……竟然出乎意料地充足。有许多直觉在数学里被推翻了,但是这一条没有。我们有种种数学上的方式去证明它无法成立的原因,虽然也许听起来不如Siri的回答那么心暖(或者心寒),但这些理性的愉悦也是一种美丽,对吧?

UUID: de02d3df-60ce-4c9e-b42d-151d8bd4ad3d

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/果壳公众号-pdf2txt/2018/2018-06-24_所以,到底为什么不能除以零?.txt

是否为广告: 否

处理费用: 0.0046 元