我们生活在一个充满时空裂缝的宇宙中?

作者: 卡塔尔·奥康奈尔(Cathal O’Connell)

来源: 环球科学

发布日期: 2018-05-29

本文探讨了宇宙弦理论,这是一种关于宇宙大爆炸后可能形成的细丝状能量结构。尽管至今未被探测到,但引力波的发现可能为验证这一理论提供新的途径。文章详细介绍了宇宙弦的特性、理论基础及其在物理学中的影响,并讨论了当前和未来的探测技术,如引力波探测器和脉冲星测时阵列,以期找到这些假设中的宇宙结构。

根据一些理论,宇宙在大爆炸后迅速冷却,这一过程使得宇宙出现“缝隙”——无数蕴含大量能量、长度有如星系的细丝。现在,还从未有人探测到这种“宇宙弦”的存在,但引力波的发现可能会改变这一局面。我们的宇宙从大爆炸开始,就以惊人的速度膨胀并冷却下来。也许这个过程实在太快了。一些物理学家认为,快速冷却可能破坏了宇宙的结构。这些细线状的裂痕可能仍然存在于时空中,我们称之为宇宙弦。

在现有的数学模型中,宇宙弦被看作是由纯能量组成的隐形弦,这些弦的直径比原子小但长度可达数光年。它们所含的巨大能量使其非常沉重:几厘米的宇宙弦可能和珠穆朗玛峰一样重。一些宇宙弦的支持者,例如法国高等科学研究所的理论物理学家蒂奥·达穆尔(Thibault Damour)是被始终预测其存在的数学计算说服的。

然而,作为早期宇宙留下的时间胶囊,宇宙弦应该蕴含巨大的能量——比大型强子对撞机中砸碎粒子所释放的能量高10亿倍以上。任何现有的天文仪器都没法检测到这些在星系之间穿越的细丝。对一部分物理学家来说,一个无法被检验的理论是不值得追求的。但是这一切可能即将改变。年仅两岁的引力波天文学可能会最终验证宇宙弦的存在。我们无法看到宇宙弦,但引力波探测器也许能够听到在它们在太空中挥动时发出的声响。

2016年去世的英国理论物理学家汤姆·基布尔(Tom Kibble)在1976年提出了关于宇宙弦的想法。他认为,在宇宙大爆炸之后的第一秒,宇宙就快速膨胀然后迅速冷却,这导致量子场的相变,如同水冻结成冰一般。基布尔过去的一些预测已经得到了证实。他独立预测了一个可以将质量赋予其他粒子的基本粒子,现在称为希格斯玻色子。然而,宇宙弦的验证极其困难。它们只会出现在与可观测宇宙一样大的广大区域的边缘。

要不是5年后乌克兰物理学家亚历山大·维连金(Alexander Vilenkin)得到有说服力的计算结果,宇宙弦的故事可能已经结束了。到了20世纪80年代初,大多数宇宙学家接受了宇宙大爆炸理论——宇宙是从一个温度与密度极高的均匀状态演化而来的。但是这个想法存在一个重要的问题:现在的宇宙中物质分布是不均匀的,存在星系和星系团等结构,这种不均匀的宇宙是如何形成的呢?

维连金在思考这个问题时,恰好看到了基布尔1976年论文中的批注:当宇宙弦在空间中扭动时穿过自己,就会切下来一个独立的“环”。这些环就像是在太空中,具有光年尺寸的“呼啦圈”,它们的质量巨大。维连金不断进行计算机模拟,发现早期宇宙中存在的闭弦的数量非常接近星系的数量。他推断,也许一个闭弦会生成一个年轻的星系,就像一粒沙子有可能会长成一颗珍珠。这个想法激起了物理学家极大的兴趣。

史蒂芬·霍金写了许多探讨闭弦是如何坍塌成黑洞的论文。许多人对它们在空间上是如何弯曲、扭曲的很感兴趣。有人甚至得出了一套宇宙弦的探测理论:如果宇宙初期存在大量的闭弦,那它们就会在大爆炸的余晖,也就是宇宙微波背景辐射上留印记。1989年11月,宇宙背景探测器(COBE)卫星发射——这是一项耗资1.4亿美元的实验,用于绘制宇宙微波背景辐射的分布。

但是在1992年,数据发布时,科学家并未发现宇宙中有丝毫宇宙弦的痕迹。相反,这些数据更倾向于另一种理论,即星系来自宇宙比原子还小时的微小量子涨落。与此同时,基布尔的弦在物理学其他领域中出现了。1996年,同一期《自然》期刊上的两篇论文通过液氦迅速冷却的实验,模拟了早期宇宙的演化。在液晶和超导体的相变过程中,研究人员发现了类似于弦的裂纹缺陷,这些特殊材料的性质也符合基布尔方程。

宇宙弦思想也出现在微观物理学中。一篇于2003年发表在Physical Review D的综述得出结论:几乎所有的超对称理论(该理论认为所有基本粒子都存在尚未被发现的超对称粒子)都预测了宇宙弦以某种形式存在。与此同时,奥卢姆和其他人的计算机模拟表明,如果这个预测成立,那么可观测宇宙中至少分布有十亿个圈状的闭弦。现在缺少的是实际观测。但是,这种比原子直径更细、和星系一样长的不可见物质,该如何检测呢?

引力波探测器是我们探测宇宙弦运动痕迹的最佳希望。它们可以探测不同频率的引力波:LIGO和VIRGO可以探测高频的引力波,脉冲星测时阵列可以探测低频,而LISA可以填补两者之间的空白。2015年9月,激光干涉引力波天文台(LIGO)检测到由两个合并的黑洞发出的引力波。这将天文学家探索宇宙的能力提升到另一个高度。宇宙弦看不见,但它们有可能被探测到。

引力波是大质量物体快速移动时所产生的时空涟漪——比如一对黑洞或中子星。或者,是一个扭曲的宇宙弦。“就像一根挥动的鞭子。” 达穆尔解释说。他在2000年与维连金一起提出了这个想法。一条鞭子的挥动声,实际上是当它尾部的一部分移动速度超过声速时产生的音爆。同样,随着闭弦的摆动和反弹,它的一部分会被甩到光速,并释放一阵引力波。两位物理学家计算后表示,这样的暴发是可以被LIGO检测到的。

从2005年到2010年,LIGO一直在探测,但没有得到理想的数据。自2015年9月以来,灵敏度提高了4倍的LIGO继续坚守岗位。探测的一个难点是这种引力波是沿着特定方向发射的,就像手电筒的光束。LIGO必须正好在引力波的路径上。这就是为什么我们探测宇宙弦的最大希望可能不在于它们的挥动,而在于它们的转动。圈状的闭弦转起来就像呼啦圈一样,它会发出引力波——每转一圈都会产生一次引力波。

由于闭弦周长可以达数光年,所以可能需要几十年才能完成一次自转。换句话说,这个宇宙级别的“呼啦圈”会以极低的频率产生引力波。对于LIGO来说这个频率太低,没法检测到。这时候就需要一个完全不同的引力波探测器。幸运的是,我们刚好有。脉冲星测时阵列(pulsar timing array)是一个星系量级的引力波探测器。

脉冲星是会发射强烈脉冲的旋转中子星(恒星爆炸塌陷之后的核心),其脉冲发射频率的精准程度能和原子钟相媲美。北美纳米赫兹引力波观测站(NANOGrav)十多年来一直痴迷于为几十个脉冲星计时。任何与标准脉冲周期的偏差都可能意味着,一束经过的引力波拉伸或挤压了我们与脉冲星之间的时空,导致时间稍微滞后或超前。“我们将打开一个全新的低频引力波探测窗口。” NANOGrav的站长西门子说。

为了尽可能监视更多的脉冲星,NANOGrav与另外两个脉冲星测时阵列相连,其中一个使用欧洲的射电望远镜,另一个则位于澳大利亚新南威尔士州的帕克斯天文台。但去年九月,西门子和奥卢姆宣布搜寻仍然一无所获。“在物理学中,当你找不到预期的东西时,并不代表是失败,” 奥卢姆说。“这是另一种意义上的成功,因为它暗示了我们宇宙中还存在着我们所不知道的事情。

”在某些特定量级上没有发现宇宙弦,就已经可以排除一部分超对称理论。寻找宇宙弦的下一步,也许是我们得到答案的唯一希望,就是将于2034年发射的激光干涉空间天线(LISA)。即使结果一直都不理想,但物理学家仍然不会放弃宇宙弦。西门子表示,弦的能量可能太低,因而无法发出任何可探测信号。另一种可能性是古老的宇宙弦在宇宙大爆炸之后,飞快地释放能量并耗散殆尽,以至于没有留下明显的痕迹。

如今,宇宙弦和一些巧妙的理论,能帮助我们更好地理解宇宙,但这些理论缺乏实验上的验证。“物理总是集美丽与危险于一身,” 达穆尔说。“有时某些东西存在,却永远看不到。”

UUID: e5f0e2fe-3e7d-41b8-b89d-b72b18d1110c

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/环球科学公众号-pdf2txt/2018/2018-05-29_我们生活在一个充满时空裂缝的宇宙中?.txt

是否为广告: 否

处理费用: 0.0076 元