由于在抗衰老中的重要作用,近30年来,端粒酶受到科学界的广泛关注。人们渴望从中获取长寿的方法,但却屡次无功而返。在今天发表于《自然》期刊的论文中,加州大学伯克利分校的科学家首次获得端粒酶的清晰3D结构图像,端粒酶结构的揭晓为抗衰老药物研究带来新的希望。
人们对端粒功能的认识源自上世纪70年代。1973年,前苏联科学家Alexei Olovnikov提出端粒假说。细胞每经过一次分裂,染色体两端的端粒就会缩短。他据此推测,当染色体缩短到一定限度后,细胞将失去分裂能力。这是人类首次将端粒与衰老联系起来,也掀起了与端粒相关研究的浪潮。
到了1984年,加州大学伯克利分校的Carol Greider和Elizabeth Blackburn在单细胞生物四膜虫中首次发现,一种酶可以合成染色体末端的DNA、弥补细胞分裂对端粒的损耗,这种酶也被命名为端粒酶。在生物体内,端粒酶的活性受到严格的调控。随后的研究发现,在人类和其他多细胞生物中,端粒酶主要在胚胎期和需要分裂增殖的细胞中表达,而在分化成熟的成体细胞中,端粒酶的活性已经丧失。
因此,很多科学家认为,端粒酶的缺失是衰老的主要原因。Greider和Blackburn的革命性的发现不仅让两位科学家在25年后获得诺贝尔奖,还让科学界及民众看到了延长寿命的曙光:如果我们能让端粒酶始终处于激活的状态,细胞就有可能实现无限复制。然而,直至今日,对端粒酶的研究也没能给我们带来抗衰老药物,一个重要的原因就是我们对这种酶的了解还十分有限。今天,一篇发表于《自然》杂志的论文带来新的希望。
同样来自加州大学伯克利分校的研究团队运用冷冻电镜技术,首次揭示人体中端粒酶的3D分子结构,端粒酶结构的破解将为靶向性药物的研发提供可能。冷冻电镜下的高分辨率图像加州大学伯克利分校的分子及细胞生物学教授Kathleen Collins已经在这一领域摸索了26年,她激动地表示:“这项研究持续了很长时间,在不懈的坚持努力下终于实现。”Collins和她的同事Eva Nogales共同领导了这项研究。
在过去30多年间,我们对端粒酶结构的认识十分有限,只知道它是由一个RNA骨架和6种不同的蛋白组成,但对于修饰RNA骨架的蛋白有多少个、端粒酶是独立执行任务还是连结成对的,此前我们一概不知。这让科学家很难“对症下药”,找到激活端粒酶的手段。端粒酶研究的一大困难在于得到纯净的端粒酶分子。论文第一作者,加州大学伯克利分校的博士后Nguyen分离并纯化得到了纯度远超此前的端粒酶分子。
此后,运用最先进的冷冻电镜技术,他们首次得到了活性端粒酶的清晰3D结构。作为去年诺贝尔化学奖表彰的技术,冷冻电镜可以帮助科学家得到无法结晶、无法使用X射线的复合物的结构。在这项研究中,他们将人类端粒酶图像的分辨率提升了4倍,从此前的30埃发展到7~8埃(1埃=10-10米)。在高分分辨率图像中,研究人员终于发现端粒酶的真正结构。
Nguyen回顾起当时的情景:“当我第一次观察到端粒酶包含11个蛋白亚基时,我激动地喊道:‘哇,这就是它们组装在一起的方式!’。”
现在,研究团队正朝着将分辨率提升至3~4埃的目标努力,这一目标相当于碳原子直径的两倍,将为相关药物的设计提供足够的理论支撑。端粒酶结构揭开罕见怪病机制Nguyen说,他们新发现的结构仍然缺失精细的细节,但结合我们对人体端粒酶基因测序的数据,这一发现足以让科学家开始寻找抗衰老药物的潜在靶点。尽管长寿药的研发还需大量研究,但这一发现已经为一类罕见病的研究带来重大突破。
1999年,Collins发现了首例由端粒酶突变导致的人类疾病:角化不良蛋白的突变引发一种名为先天性角化不良的罕见疾病,患者出现贫血症及其他皮肤和肠道问题,并可能死于骨髓再生障碍。但是,对于端粒酶蛋白的突变是如何导致疾病的,人们始终没有答案。Collins等人根据最新研究发现,正常情况下,两个角化不良蛋白附着在RNA骨架上,它们不仅需要向外延伸、与其他蛋白连接,还需要彼此接触。
而导致疾病的突变阻止蛋白间的连接,从而削弱了RNA骨架的生存能力。一些先天性角化不良患儿的端粒酶含量只有正常人的25%,其寿命往往只有不到20岁。而端粒酶含量为正常人一半的患者,通常在中年时期遭遇健康危机。
Collins对这项发现感到十分兴奋。“当我决定研究这个分子时,我没想到它会是如此复杂,”Collins回忆起她开始从事这项研究时的情形,“1991年博士毕业时,我对端粒酶的工作机制产生了兴趣。那时,我在寻找一种简单的聚合酶系统,当我看到端粒酶时,我在想,天呐,没有比它还要简单的了。现在看来,当时我简直太天真了。”破解了“最简单的”端粒酶结构后,Collins还将向着更多复杂的酶发起挑战。