物理学中最难的方程之一

作者: Kevin Hartnett

来源: Quanta Magazine

发布日期: 2018-01-18

本文讨论了物理学中的纳维叶-斯托克斯方程,这是描述流体流动的复杂方程,被列为数学上的“千禧年大奖问题”之一。文章探讨了湍流的复杂性,以及数学家们如何尝试证明这些方程解的存在性,尽管这些方程在实验中已被证明有效,但数学上的完整理解仍然是一个巨大的挑战。

物理学是一门包含许多方程式的学科,这些方程描述了从微观世界的粒子的行为到宏观宇宙的演化。在所有的物理方程中,有一组在数学上被认为极具挑战性,还被克莱数学研究所列为七个“千禧年大奖问题”之一,它们就是用来描述流体如何流动的纳维叶-斯托克斯方程(简称NS方程)。

湍流是指一个有序流动的流体(液体或气体)变化成看似不可预知的漩涡,例如香烟头升起的一缕青烟在空气中扩散开来,河流绕着石头,以及牛奶和咖啡的混合,生活中有许多熟悉的现象都与湍流有关。然而,熟悉并没能孕育出知识,毫不夸张的说:湍流是物理世界中最难以理解的部分之一。

科研人员想要了解的是一个平稳的流动是如何分解成湍流的,以及如何模拟已产生湍流的流体在之后的形状演变。但千禧年大奖要求数学家解决的是更为谨慎且基础的问题:证明方程的解永远存在。换句话说,就是要探寻方程是否能从任何起始条件开始,对任意流体进行无限的描述。

证明爆炸没有发生(且解决方案总是存在)等同于证明流体内的任意粒子的最大速度,需维持在有限的数量以下。其中在流体中最重要的量是动能。当我们使用NS方程对流体进行建模时,流体会具有一定的初始能量。但是在一个湍流的流动中,这些能量可以发生集中——即动能不是均匀分布在河流上,而是可以在任意小的涡流中聚集,而理论上,那些在涡流中的粒子可以加速到无限快的速度。

数学家们根据能在无限小的尺度上失效的程度来对像NS这样的偏微分方程进行分类,NS方程就处于所有类型的极端。这个方程的数学难度在某种意义上是它们应该描述的湍流复杂性的一个精确反映。每当我们从数学角度谈论物理方程时,很自然的就会想要知道:这些会改变我们对物理世界的看法吗?经过近200年的实验,我们可以清楚地看出这些方程是有效的:由NS方程预测的流动与实验中观察到的流动总是相符的。

如果你是一个实验物理学家,或许这样的一致性就已经足够了。但数学家想要知道的不仅仅是这些——他们想要知道我们是否可以一直遵循这些方程,准确地看到对有着任意初始配置的流体是如何发生瞬时变化的,甚至能精确定位湍流的开始。

UUID: 191dcd25-413f-4027-a549-ed04f48d054a

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/原理公众号-pdf2txt/2018年/2018-01-18_物理学中最难的方程之一.txt

是否为广告: 否

处理费用: 0.0035 元