当我们今天看向宇宙时,其中估计有两万亿个星系,平均每个星系包含约数千亿个恒星,这意味着我们可以在可观测宇宙中观测到大约10^24颗恒星。当我们看向越来越远的距离时,我们也在回顾时间,而且由于宇宙大爆炸发生在一个有限的时间之前(大约138亿年),我们能看到的距离有一个极限,且仍然能看到星星。那么一定有一段时间之前宇宙里没有恒星,在那之后第一颗恒星出现在了宇宙。那是什么时候呢?
我们现在比以往任何时候都更了解答案。
在人类伟大的天文台,如哈勃太空望远镜,以及赫歇尔和斯皮策等红外太空望远镜的帮助下,我们已经看到了比任何时候能看到的更远的宇宙。我们已经发现了12亿至130亿年前的一系列星系和类星体,其中有一小部分星系甚至比这更早。目前的纪录保持者是GN-z11,这个星系从宇宙只有4亿年的时候就有了光,这是当前宇宙年龄的3%左右。
而且我们之所以看到这个星系也完全是靠运气,我们现在这一代的望远镜不可能找到比这更远的恒星或星系。
这并不是因为超出这个范围的恒星或星系是不存在的,而是宇宙当时的性质意味着我们看不到那些存在的宇宙。一旦第一个38万年过去了,宇宙已经冷却到可以稳定地形成中性原子,而不会被宇宙大爆炸中的剩余辐射直接电离,在这个时候就没有恒星。
然后还需要几千万年(或者甚至超过一亿年)的时间,引力才能使这些微不足道的地区第一次吸引足够的物质来点燃核聚变。然而,当进入这种状态的时候,有两件事情对他们不利:1、 宇宙正在膨胀,这意味着即使是最热的恒星所产生的紫外线光线也会被红移:从紫外线到可见光一直到红外线,远远超过哈勃能看到的范围。2、 现在充满中性原子的宇宙阻挡了来自这些恒星的光线,就像我们星系中的中性物质遮蔽了我们眼中的银河系中心一样。
而且,产生的第一个恒星和星系与我们现在的也有很大的不同。现在,宇宙中存在的恒星是由大约70%的氢气,28%的氦气和1-2%的“其他物质”所组成的,天文学家们“懒散”地称之为“金属”。如果你看看曾经所有存活过的恒星,它们把氢和氦融合成较重的元素,这就是它们总和的效应:丰富了大爆炸后的宇宙,把宇宙由75%的氢,25 %氦和0%金属变成我们今天看到的这样。
这意味着形成的第一颗恒星应该是纯净的,换句话说就是完全由氢和氦构成,没有金属污染它们。我们最好的候选者是CR7星系中的一群恒星,它的光线飞行了130亿年多的时间才能到达我们的眼睛。
从理论上讲,我们可以使用我们所知道的关于结构形成的知识来模拟第一颗恒星应该形成的时间。 因为我们知道以下内容:38万年前的宇宙中某些地区的密度是多少,物质和辐射服从的是什么物理定律(如重力和电磁),当时有多少宇宙是由物质,辐射,暗物质和中微子组成的,在膨胀的宇宙中,冷却、收缩和坍塌是如何工作的?我们可以模拟宇宙中的条件来判断何时会首先出现核聚变点火,并因此产生第一颗恒星。
在我们目前的天文台中,我们看不到这些恒星,因为它们周围的中性物质阻挡了太多的发射光。在宇宙被重新电离之前,这意味着有足够的热紫外线发射恒星将这些中性原子转变成电离等离子体,然后紫外线和可见光就不能通过。一般来说,宇宙在500-550亿年之前不会被重新电离,也就只有通过运气,我们才能观测到恰好位于早期发生重新电离的空间区域的GN-z11古代银河。
我们可以通过观察我们自己的星系来看到这一点,它可能对可见光和紫外光是不透明的,但是在更长的波长处是透明的。这就是为什么詹姆斯·韦伯太空望远镜将会取得如此巨大的进步的原因。是的,它会比哈勃还要大。是的,它会有更先进的仪器。但是它最大的进步是,它被设计成可以看到更长的波长,一直到中红外,大约是哈勃望远镜可以看到的最长波长的20倍。
从理论上说,它应该能够看到来自早到1.5亿至2.5亿年之间的星系和星团的光线。
我们有大量的理论信息可以给出对宇宙时间线的回答:到5.5亿年前,宇宙100%被重新电离,在4亿年前,我们目前的(哈勃)最遥远的星系的记录,到约2亿年前,我们应该形成第一个物质星系,正好在詹姆斯·韦伯太空望远镜将能够看到的范围内,当宇宙达到5000万到1亿年时,第一颗恒星应该形成。
但是还有更多的科学要做。 即使是詹姆斯·韦伯(James Webb),我们也不可能一路走到第一个恒星上,但是我们很可能会更好地解决他们到底在哪里和什么时候产生的。至于第一批原始恒星? 第一颗恒星证实除了氢和氦之外没有别的东西? 如果大自然对我们友善,詹姆斯·韦伯不仅会给我们带来第一个,而且会给我们带来很多例子。
宇宙在那里等着我们去发现它。 如果我们想知道答案,我们只需要做的就是看。 只有当我们建立了更好的观测站并获得更好的数据时,我们对所有这些数据的理解才会改善。