跨越引力波探测的量子门槛

作者: 马怡秋、缪海兴

来源: 天问专栏

发布日期: 2017-11-03

本文探讨了引力波探测中的量子效应问题,特别是如何通过量子纠缠技术来突破标准量子极限,提高探测器的灵敏度。文章详细介绍了量子噪声的来源及其对探测器灵敏度的影响,并提出了一种基于EPR纠缠的新方法来解决这一问题。

引力波的第一个电磁对应体的发现标志着天文观测多信使时代的到来。今天的科学家已经不仅仅满足于探测到引力波,而是想通过更精确的研究去挖掘、验证更深层的知识理论。工程技术的革新使得探测器越来越精准,但是量子效应带来的限制却越来越被放大。其中一个重要的问题是:如何降低量子效应所带来的噪声,从而突破量子效应所带来的限制,提高探测器的灵敏度?为什么引力波探测器的灵敏度会被小小的量子效应所限制?

量子纠缠这种量子力学中特有的关联又是如何帮助探测器超越这种限制而成为下一代引力波探测装置的利器?

2015年9月,人类首次探测到宇宙中双黑洞并合事件GW150914所辐射出的引力波,接着其它双黑洞引力波源、双中子星引力波源又陆续被探测到。虽然这些并合事件中所释放出的引力波的总能量巨大,但它只在地球附近产生非常微弱的物理效应。

例如,引力波在距离为数千米的两个物体上造成的距离变化仅相当于原子核直径的十万分之一。目前正在运行的美国激光干涉引力波天文台LIGO中镜子的位移是10-19米,而所测量的引力波的特征频率是数百赫兹,这就意味着镜子的质心动量约为10-16牛顿*秒。

量子力学告诉我们,40千克的镜子的运动也会表现出波动性,而刻画这种波动性的物理量是物质波的波长,也约为10-19米——与镜子由于引力波而导致的位移尺度同属一个数量级。

因此,研究这类测量过程必须应用量子力学。这最早是由苏联科学家Braginsky(图1)在二十世纪六十年代提出的。特别具有实际意义的是,Braginsky发现,量子规律给测量仪器设定了一个灵敏度下限,即标准量子极限。

我们先以激光干涉仪为例来说明这个标准量子极限。注入等臂长干涉仪的强光会在干涉仪的一个端口(通常称为暗区)相干相消。但是在量子世界中暗区的光场并不为零,而存在一个微小的随机量子涨落,称为具有真空涨落的光场(简称为真空场)。当引力波驱动干涉仪在暗区产生信号光时,这个微小的涨落会干扰引力波信号的探测。

这种干扰在较高的频段主要由光的相位涨落贡献(称为散粒噪声),而在较低的频段主要由光的振幅涨落和主激光一起产生并作用在镜子上的随机辐射压力贡献(称为辐射压力噪声)。在中间的某一个频率点上,辐射压力噪声和散粒噪声大小相等。而当光强连续变化时,这些两种噪声大小相等的点会连成一条线,这条线就是标准量子极限在激光干涉引力波探测器中的实际体现(图2)。

如果不采用特殊的办法,探测器就不能探测比标准量子极限小的信号。为了解决这个问题,科学家们想办法制备了一种能够“压缩”噪声的光场,并将它注入干涉仪的暗区,取代原来的真空场。压缩光(squeezed light)可理解为对量子涨落的“重新分配”,比如“相位压缩光”就是把光场的相位涨落“压缩”,代价是增加光场的振幅涨落,反之亦然。压缩光是由一种被外界光激发的特殊晶体产生的。

不过要实现对量子噪声全频段的压缩(即超越标准量子极限),就要求科学家既能够在低频区间压缩振幅涨落,又能在高频区间压缩相位涨落——也就是说,实现一个随频率变化的压缩光。

通常的办法是:将晶体直接产生的压缩光通过一个带宽极窄(约为50赫兹)的光学共振腔(图3)。一个简单的比较便可揭示建设这种极窄光学腔在具体实验工程上的难度:四公里的LIGO干涉臂臂腔的带宽约为42赫兹。而建造更短的光学腔往往使得系统更容易受到光学损耗的污染。由于未来引力波干涉仪的噪声将完全由量子噪声主导,所以超越标准量子极限是提高未来所有地基引力波探测器灵敏度的最重要的问题。

最近加州理工学院和伯明翰大学等学校的研究人员提出了一种新的办法来解决标准量子极限的问题,这个办法基于爱因斯坦用来质疑量子力学完备性的著名工作:Einstein-Podolsky-Rosen(EPR)纠缠。爱因斯坦等人在1935年的文章中,借助思想实验发现了量子世界中的一种关联性的物理行为,并以此来凸显出量子理论用来描述定域物理时的不完备性。

随后,薛定谔基于爱因斯坦等人的工作,更加深入地研究了这种关联行为并取名为“纠缠”。20世纪光学技术的发展,又使得量子纠缠这种独特的状态可以在实验上被制备。而恰恰是这个爱因斯坦用来“攻击”量子力学完备性的“矛”,却成了今天可能解决标准量子极限问题的途径之一。实验上只需对现在产生压缩光的晶体做一点微小的调整,我们就可以用同样的装置产生两束频率分开但是互相“纠缠”的光。

如果两束具有量子随机涨落的光场之间存在着量子纠缠,那就意味着它们的涨落之间存在着关联。

这样,如果我们通过测量知道了其中的一束光(通常称为“空闲光(idler)”)涨落的信息,我们就可以部分地知道另一束光(通常称为“信号光(signal)”)是如何涨落的。这样,对于信号光来说,如果扣除掉这部分我们已经知道的涨落,它剩下的涨落相比原来没有测量空闲光时就大大减少了。

这就是通过量子纠缠来“压缩”噪声的“诀窍”。显然,信号光和空闲光之间的量子纠缠越强,这种“压缩”就越厉害。现在,我们把上述的讨论应用到引力波探测器中去。设想如果我们把两束纠缠着的光同时注入到引力波探测器中去,如图4所示。

调整这两束纠缠光的频率,我们可以使干涉仪对它们产生完全不同的响应:信号光在干涉仪里走一圈出来后将携带引力波信号,并且贡献辐射压力噪声;而空闲光在干涉仪里走一圈出来后并不携带引力波信号,也不贡献辐射压力噪声。

也就是说,空闲光“感受不到”干涉仪主激光的“存在”。因此,激光干涉仪对于信号光来说是一个引力波探测器,而对于空闲光来说它只是一个空的光学腔。

通过图4我们可以看出,这个“空的”干涉仪可以让空闲光做依赖于频率的旋转。这样,当我们在系统的终端对空闲光进行测量时,我们测量到的就是一个随频率旋转的、与信号光互相纠缠的空闲光,而这将导致信号光的噪声部分按照上段所述的方式获得一个随频率变化的压缩。如果我们适当地选取系统的参数,空闲光的旋转可以使得它在信号光中的关联部分随频率的升高逐渐由振幅转变为相位。

这样,就可以实现全频域上对量子噪声的压缩,超越了标准量子极限的限制。

这种方法的好处是显而易见的:双重使用引力波干涉仪省去了建造一个极窄带宽的光学滤波腔的大麻烦;而这种方法的缺点在于,由于两束互相纠缠的光在整个干涉仪系统中走同样的光路,因此它们将会以同样的方式受到干涉仪中各种损耗的干扰,这些干扰将破坏量子纠缠。也就是说,这种方案中的光学损耗造成的影响是现有干涉仪的两倍。尽管如此,这种方法的优点仍然是显著的,特别是考虑到未来LIGO的一系列升级方案将大大降低光学损耗。

为了捕捉巨大的引力波能量经过宇宙学尺度的长途跋涉到达地球所产生的极小的效应,我们必须在精巧的量子层次上操控我们的探测器。而作为量子力学最重要的特征的“量子纠缠”效应,也可能将在这场对人类探索极限的挑战任务中找到自己的用武之地。特别是考虑到地面探测器未来的升级以及第三代干涉仪设计的一个中心任务就是压低量子噪声。

量子纠缠这种爱因斯坦发现并且以之为质疑量子力学完备性的“矛”,竟然成了寻找引力波这种由爱因斯坦创立的广义相对论理论的最重要预言的有力工具,不得不说是一件令人回味无穷的事情。甚至有可能未来量子技术发展得如此之好,以至于我们可以对引力辐射做更加精细的研究,甚至从中发现对广义相对论的偏离,颇有些“以彼之矛攻彼之盾”的意味。这件事情如果真的发生,那人们不得不承认,物理学的命运和人的命运一样变幻莫测。

UUID: 42aee782-65d5-4ac3-a167-eb43cde0ba77

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/知识分子公众号-pdf2txt/2017年/2017-11-03_以彼之矛、攻彼之盾——跨越引力波探测的量子门槛天问专栏.txt

是否为广告: 否

处理费用: 0.0090 元