机器学习方法预测材料性能的新进展

作者: 孙奕韬

来源: J. Phys. Chem. Lett.

发布日期: 2017-08-08

中国科学院物理研究所的研究团队使用机器学习方法对二元合金的玻璃形成能力进行了系统分析,建立了合金成分与性能之间的关联,并对可能的新材料进行了预测。该研究展示了机器学习在非晶材料设计与研发领域的重要应用前景。

近二十年来,机器学习方法的发展为我们的生活带来许多便利。智能网络搜索、语音识别,乃至无人超市、无人驾驶汽车等,依托于机器学习方法的新事物正迅速地在生活中普及。Alpha Go的横空出世更让世界惊叹于人工智能的潜在价值。在科研领域,大数据的理念正在改变着科研人员对未知世界的探索方式。

美国在2011年提出了材料基因组计划(Materials Genome Initiative),以期加快材料的研发过程。我国怀柔科学城的发展规划中,“材料基因组研究平台”项目已全面开工建设。高通量实验+高性能计算+深度数据分析的研究方式已经成为时代发展的趋势。

在非晶合金研究领域,如何设计并开发处具有良好玻璃形成能力的合金,是一个具有重要产业价值的科学问题。过去非晶合金材料新体系的探索主要依据经验性判据的指导,由于其准确性与通用性的限制,非晶新材料的研发速度非常缓慢。如何提高材料设计的效率,寻找具有更优性能的材料,是非晶材料领域非常具有挑战性的问题。

最近,中国科学院物理研究所/北京凝聚态物理国家实验室(筹)汪卫华研究组(EX4组)博士研究生孙奕韬在汪卫华研究员、白海洋研究员及人民大学物理系李茂枝教授的指导下,使用机器学习的方法,对二元合金的玻璃形成能力进行了系统分析,建立了合金成分与性能之间的关联,并对可能的新材料进行了预测。

研究过程中使用了支持向量机(Support Vector Machine)这种方法,通过构建多维空间,并在这个多维空间内对数据进行分割,从而建立输入参量与输出参量之间的关联。该研究方法可通过不断选择新的参数对模型进行重复训练,探讨了合金的不同性质对其玻璃形成能力的影响。

研究发现,参量Tliq(表征合金过冷能力的参量)与合金的玻璃形成能力有最为显著的关联,而且使用参量Tliq与Tfic(表征合金热稳定性)作为输入参数,可以得到具有最佳预测效率的模型。通过对最佳模型的分析,发现已知的具有良好玻璃形成能力的二元合金,其分布与模型的预测值具有很好的一致性。使用这个模型,可以对未知的合金成分进行预测,这样由深度数据分析指导设计的实验,可以极大地缩短非晶合金材料的研发周期。

该工作作为使用新的工具对经典问题进行分析的一种尝试,得到了初步成果。这表明,机器学习的方法在非晶材料设计与研发领域具有重要的应用前景。采用更全面、完善的数据库,运用更深入的人工智能算法,机器学习方法能够为非晶等领域科研人员提供更精准的信息,进一步加速材料的研发过程。

这项研究结果最近发表在J. Phys. Chem. Lett.(IF=9.35)8,3434(2017)上。该项研究工作得到国家自然科学基金项目(51571209,51461165101)、科技部973项目(2015CB856800)和中科院前沿科学重点研究项目(QYZDY-SSW-JSC017)的支持。

UUID: a5c3442c-1232-494d-b088-84336a0641ee

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/中科院物理所公众号-pdf2txt/2017/中科院物理所_2017-08-08_机器学习方法预测材料性能的新进展 | 进展.txt

是否为广告: 否

处理费用: 0.0033 元