太空精酿 (代尔夫特理工大学在读博士)2017年6月19日,我国首颗国产广播电视直播卫星中星9A在西昌卫星发射中心由长征三号乙运载火箭发射升空。然而由于火箭第三级滑行段姿控发动机滚动控制的推力器出现异常,卫星并没进入预定轨道,远地点比预计中低了近20000公里。但这颗卫星并未就此宣告任务失败。
在随后的20天内,地面控制中心人员经过10次轨道调整,让这颗卫星逐渐“爬”到了目标轨道:位于东经101.4度赤道上空35786千米的点上。在这里,可以实现与地球自转完全相同的轨道周期,相当于相对地面同步/静止。这样即可实现卫星预计的电视直播的任务。不少媒体在报道这次卫星自救事件时甚至用起了“星坚强”这样的词汇。事实上,国内外火箭入轨错误的事故屡见不鲜,每年都有3-5起。
但只要不是严重的火箭入轨错误,大都有弥补错误的空间,这个空间就是靠卫星本身的推进系统完成,但一般会付出巨大的寿命代价。中星9A就可能因为此事失去3-5年寿命(原计划12-15年)。说到这儿,很多人可能会有疑问,既然有火箭了,为什么卫星还要自带推进系统呢?事实上,这是十分必要而且重要的。卫星带有推进能力的必要性可能会有人认为,卫星的发射、入轨全靠火箭。
其实不然,“人生的路啊,要寄几走”这个道理,卫星也是很明白的呢。目前,对于几乎任何一颗卫星,推进系统都是必备的,因为它实在是太重要了。航天任务的需求即便今天的火箭发射技术已经日趋完善,但它也只能将卫星送入预订的轨道高度和轨道倾角上,剩下的都由卫星自我推进。例如,即便中星9A正常入轨,也是进入一个同步转移轨道,这是一个距离地球最近300-500千米,而最远可达36000千米的超大椭圆。
卫星距离地面越远速度越慢,到了最高点时,卫星上的推进设备工作,由此而来的推力与速度方向相反且呈一定夹角,将卫星速度减速到3.1千米每秒并改变速度方向,实现相对静止地“停”在赤道上空(此时轨道周期)。而对于探索外太空之类的复杂任务,推进系统的重要性基本排名第一。例如探月任务,火箭只能将其送出地球几百公里,但目标却是远在38万公里外的月球,这个过程就需要经历复杂的机动过程。
我国在2010年国庆节发射的嫦娥二号,甚至在复杂的探月任务结束后,飞到了距地球150万公里的日地拉格朗日引力平衡点,又在700万公里外探访了一颗小行星,如今已经在1亿公里外了。修正宇宙环境造成的轨道偏移宇宙环境并不能简单模拟,因为影响因素实在太多。
例如,对于一颗飞在地球附近几百公里的卫星而言,需要考虑的影响就包括:地球非均匀的重力场(比如喜马拉雅山和太平洋的引力影响不同),月球、太阳甚至木星的引力摄动,地球海洋、陆地和大气的潮汐,太阳光和地球反射的太阳光对卫星造成的压力,极其稀薄大气造成的阻力等等因素。在这些因素影响下,卫星会逐渐偏离轨道,此时必须依靠本身推进能力修正。
一个典型的例子是已经入轨近20年的国际空间站,它目前飞在距离地面400千米的轨道上。可以从图中看出,它的轨道高度深受近地环境影响,如果不加以推进修正,就会迅速降低。虽然每次货运飞船对接国际空间站后,都会在返回地球前使出绝大部分能量将国际空间站推高,但目前已经是一个420吨的庞然大物的它每年都需要自我修正好几十次,并消耗掉高达7吨燃料。
避免相撞危险目前,地球周围已经分布有数亿个太空垃圾,在每秒七千多米的速度下,任何一个都是对正常航天器极其危险的威胁。有的编队卫星也要预防可能发生的碰撞事故。因此,卫星携带推进系统也非常必要。
卫星推进技术都有哪些在卫星应用领域,人类已经有了很多种推进方案,但总结下来就是最基本的牛顿运动学定律:推力能改变卫星的运动状态(第一定律);推力越大改变能力就越强(第二定律);推力与反推力是同时存在的(第三定律)。因此,卫星推进的本质就是当一些工质被加速离开卫星时产生反推力,可以改变卫星的运动状态。
这里有个术语叫“工质”,其实就是可以将热能和化学能等转换成机械能的“工作物质”,火箭燃料和燃烧后的燃气是航天里最典型的工质。汽车、轮船和飞机里的石油产品和燃气,也可以理解为一种工质。目前推进技术基本以工质不同来分开,下面我们就来细数下彼此的异同。化学燃烧推进这是最常见也被人类最为掌握的技术,通过氧化剂和还原剂燃烧释放大量热量,燃烧的产物高速离开发动机,产生反推力。
由于这个燃烧过程比较剧烈,且需要很重的发动机存在,一般不适合小型卫星而适用于大型航天器。生活中汽车通过燃烧汽油来驱动,就是利用了化学燃料。物理变化推进这个过程中不会发生化学反应,通过工质的物理变化,例如液态变成气态的过程,加速离开卫星产生反推力。它的好处在于不需要发动机燃烧室,质量和体积都很小,可以提供较小且容易控制的推力。这种技术适用于任何一个卫星,也是目前应用最广的卫星推进方式。
而且它不仅可以用来改变轨道,还可以通过小型推力装置控制姿态。生活中,水烧开后蒸汽将水壶盖顶起,利用的就是水的物理变化。电推进电推进就是将工质电离后送入磁场,在磁场作用下离子以极高速度离开卫星,从而产生反推力。由于电离效率很高且工质离开的速度轻易达到几万米每秒,远远超过化学燃料工质最高几千米每秒的速度,电推进也是目前效率最高的推进方式,消耗工质少而推进效果好。
光能推进前文也提到了,太阳光照在卫星表面上被反弹时会产生压力,而如果合理利用,这部分压力就可以变成推力。目前国际上关于它的研究也是航天领域的热点。无工质推进?目前,还有一个航天爱好者团队提出了无工质推进系统的可能性,这个想法看似像永动机一样夸张:不使用任何工质,意味着不必携带多余负重,也不依赖宇宙环境,凭空产生动力。
在很多专家质疑民科的情况下,NASA还是支持了一个叫做EMdrive的无工质发动机研究项目,它通过封闭锥型腔体内的微波光子电磁跳跃来产生推力。但它目前并未获得科学界认可,给NASA的报告中,在不能排除其他因素影响的前提下,也仅仅产生了微牛顿级别的推力。虽然这个的确在理论上不能让人信服,但这个团队作为高端的民科能进行这样的研究,也算是做了些有意义的事情吧。