彭罗斯瓷砖:不重复的图案与材料科学的革命

作者: PATCHEN BARSS

来源: 科研圈

发布日期: 2017-06-29

彭罗斯瓷砖是一种能以永不重复的方式铺满无穷平面的图案,由英国数学家罗杰·彭罗斯创造。这种图案不仅在数学上具有革命意义,还在材料科学领域产生了深远影响,如改善了不粘锅和3D打印材料的性能。彭罗斯的创新在于使用非周期性贴砖,通过禁用对称性原则,创造出不重复的图案。这种创新随后被以色列晶体学家丹尼尔·谢赫特曼应用于解释非周期性晶体结构,即准晶体,这一发现最终改变了晶体学的定义,并展示了禁用对称性在自然界中的实际应用。

彭罗斯瓷砖能以永不重复的方式铺满无穷平面。这种出自数学家之手的图案同样出现在材料科学领域,还为我们带来了更好的不粘锅和3D打印材料。1974年,英国数学家罗杰·彭罗斯创造了一套具有革命意义的贴砖样式,这套贴砖能够以永不重复的方式铺满在无穷平面上。1982年,以色列晶体学家丹尼尔·谢赫特曼发现,某种金属合金的原子排列与之前测量的其它结果都不一样。

这两位学者都违抗人类的直觉,改变了我们对自然结构的基本认识,并揭示了从高度有序的环境中出现无尽变化的可能性。两人突破的核心观念是“禁用对称性”,之所以叫这个名字,是因为它完全违背了人们对重复与对称之间关系的固有认识。彭罗斯是一位大胆而充满豪情的学者,他对单一的图形和重复不那么感兴趣,而对无穷的变化兴味盎然。

他感兴趣的是一类“非周期性”贴砖,它们由若干块组成一套,可以严丝合缝地铺满无穷大的平面,而构成的图案又不会重复。这可是一个难题,因为他不能使用具有二、三、四、六条对称轴的图形,这些图形在无穷大的平面上会铺成周期性的重复图案。这就意味着彭罗斯只能依靠那些会在平面上留下缝隙的图形,也就是那些具有禁用对称性的图形。

彭罗斯将思路转向具有五条对称轴的正五边形,想靠它来构建自己的无重复图案。他曾经提过,理由之一是五边形“看上去很顺眼”。彭罗斯贴砖的独到之处,就在于它们没有因为正五边形的线条和角度留下让人难受的空隙。它们的排列天衣无缝,在平面上辗转腾挪,眼看就要重复了,却总能峰回路转。彭罗斯贴砖吸引大众的原因主要有两个。其一,是他找到了只用两种贴砖就生成无限变化图案的方式。

其二则更了不起,他找到的这两种贴砖,都是形状简单的对称图形,本身看不出一点不寻常的迹象。彭罗斯为他的非周期贴砖设计了几种不同的版本。最有名的一套称为“风筝”与“飞镖”。“风筝”看上去就和孩子们玩的风筝一样,飞镖的轮廓则像简化版的隐形轰炸机。两者都能干净利落地由对称轴一分为二,它们的表面还绘有两条简单、对称的弧线。彭罗斯制定了一条平铺规则:“合法”的拼贴必须能使弧线对接,连成连续的曲线。

没有这条规则,风筝和飞镖就会摆出重复的图案;而在这条规则之下,就永远都不会出现重复。彭罗斯贴砖还可以分割成小一号的贴砖。风筝可以分成两片小风筝和两片半块的小飞镖;飞镖可以分成一片小风筝和两片半块的小飞镖。在任何合理的拼贴方式下,那些半块的飞镖都能两两组合。数学上我们将两片半块飞镖视为一个整体。

假设我有一片彭罗斯贴砖,包含A块风筝和B块飞镖,那么分割一次之后,我就能得到2A + B块风筝和A + B块飞镖。如果分割无穷次,它们就可以看成是铺展在无尽平面上,由此便能够得到两种贴砖数量的整体比例。对于这种计算,重复图案的比例一定是有理数,如果不是,就说明图案永远不会完全重复。彭罗斯贴砖的比例不仅是无理数,而且还是斐波那契比例,飞镖数:风筝数量=风筝数:贴砖总数。

彭罗斯在接受禁用对称性之时,还不知道自己已经处于为材料科学带来革命的新思潮之中。毕竟,对称一直是纯数学和自然世界的基础。天文学家马里奥·利维奥将对称称作是“破解自然设计的最根本工具之一”。大自然使用正方形与正六边形的理由和人类设计者一样:它们简单、有序、有效率。如果五边形在贴砖图案这种简单的室内设计中都不实用,那么它们也就不可能出现在晶体这种固体材料之中了。

然后到了1982年,谢赫特曼离开以色列海法理工学院进行学术休假,来到美国国家标准局。他在那里的实验室摆弄铝锰合金,但合金的衍射图样却看不出晶体学家熟知的任何标准对称。实际上,它们原子排列的样子,似乎正像彭罗斯在数学世界中刮起旋风的那些正五边形、长菱形、风筝形和飞镖形。

为了理解自己发现的东西,谢赫特曼像彭罗斯一样,向同样的直觉与常识发起了挑战。他不得已接受了禁用对称性与五边形带来的困惑和非重复性质。回以色列后,谢赫特曼满不情愿地得出结论:他发现了一种非重复的晶体原子结构。不过他和材料科学的其他人一样,一开始都不愿意将自己的发现称为晶体,而称之为“准晶体”。结果人们发现晶体并不总是由原子一一堆聚而成。

如果晶体不是逐渐积聚成形,而是一次生成很大的一块,相距很远的原子就会像彭罗斯贴砖那样,影响对方的位置。禁用对称性像许多禁忌一样,最终得到了接受,成为自然存在的一种合理形式。准晶体不仅成为学术研究新领域的课题,它们不寻常的结构还具有许多有用的性质。比如,不规则的原子构形可以降低材料的表面能,使其不易与别的物质粘黏。因此,准晶体可以用作不粘锅的表面材料。

准晶体往往还具有较低的摩擦系数和不易磨损的特性,因此,剃刀和手术用具这类接触人体的锋利工具,可以用准晶体作理想覆层。由于准晶体的结构从不重复,它们在电磁波下会形成独特的衍射图样。光电子研究者对它们如何影响光的透射、折射与光致发光效应很感兴趣。准晶体在过冷状态下,电阻会飙升接近无穷大。它们又能吸收红外辐射,迅速变热。这使它们成为3D打印的高价值添加剂。

3D打印通常用塑料粉末作为主原料,混入准晶体粉末后,在红外光照射下,准晶体粉末会迅速升温,将周围的塑料颗粒融化,使它们粘黏固定在一起。

没人知道禁用对称性的故事会怎样完结。数学家继续探索着彭罗斯贴砖的性质,准晶体也还是基础与应用研究的课题。但它们经历了一段不可思议的旅程。在过去的40年里,五轴对称由不切实际变得富有价值,由违背自然变为合乎自然,由离经叛道变成主流课题。对于这场转变,我们要感谢那两位学者,他们推动传统观念进一步发展,从而揭示出自然界无穷变化的新形式。

UUID: 13d43772-1fa4-4b35-b695-fac65c3b788f

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/原理公众号-pdf2txt/2017年/2017-06-29_把这种瓷砖铺满世界,图案也不会重复.txt

是否为广告: 否

处理费用: 0.0073 元