我们的大脑生来就不太会搞概率,所以这么多人弄错也正常。概率作为对可能性大小的度量,似乎充满了主观色彩。明天下雨的可能性有多高?曼联夺得下届英超冠军的概率有多大?在一盘棋中AlphaGo的获胜概率是多少?我们身边的每个人对这样的问题都有着不同的答案。然而,概率似乎又有它自己的铁律。
在帕斯卡等人最初用二项式定理研究赌桌上的胜率时,人们已经意识到在骰子和轮盘看似不可预知的行为背后,藏着一套可以被掌握的数学规律。一意孤行或者是听天由命,违背这套规律的赌徒可能在一两个晚上大获全胜,却最终一定会受到概率的惩罚。随着人类数学与计算水平的提高,概率论被应用到越来越多的领域之中。在金融、统计、物理、气象、生物等诸多学科,那些依靠直觉而不是计算对可能性进行推断的日子已经一去不复返了。
在本文中,我们介绍几个概率谜题。它们向我们展示了,对于概率,直觉并不总是可靠——但经过足够的思考和踏实的实验与计算,我们常常能够战胜错觉,抵达真相。三门问题是上世纪五十到八十年代,科普作家马丁·加德纳(Martin Gardner)为《科学美国人》撰写了近300期的“数学游戏”专栏。在其中一期专栏中,加德纳描述了一个名为“三囚犯”的概率问题。这个问题的一个变种后来成为了网络上最著名的概率趣题之一。
这一变种(Monty Hall 三门问题)的描述如下:假设你参与一个综艺节目,并被要求从三扇门中选择一扇打开:一扇门的背后是奖品(一辆汽车),另外两扇门后则各是一只山羊。当然,比起山羊,你更希望抽中汽车。你随机选择了一扇门(不妨设为第一扇)。节目的主持人知道每扇门背后是什么。看到你的选择后,他选择了剩下两扇门中没有奖品的一扇打开(如果两扇门后都没有奖品,则以各50%的概率随机选择其中一扇)。
不妨假设他打开了第三扇。接着他问你,你想改选第二扇门吗?为了提高获奖概率,你有必要改变你之前的选择吗?这一问题的正确答案是,你应当改选第二扇门——这样做让你的中奖概率从1/3提高到了2/3。
1990年,当这个问题——以及它的正确答案——在美国畅销杂志《Parade》的一个专栏上重新出现时,近万名读者,包括“近千名博士”,写信给专栏作者玛丽莲·沃斯·莎凡特(Marilyn vos Savant),其中绝大部分反对这一答案。人们似乎认为,主持人打开第三扇门后,第一扇门和第二扇门后藏有奖品的概率都是1/2,因此改选第二扇门并无好处。
面对滔天的反对声,玛丽莲据理力争,拒不认输,连写三篇专栏解释自己的答案。她同时在专栏上实名公布了不少读者来信。一些反对的声音摘抄如下。“你错了。但看看好的一面:假如那么多博士们都说错了,那这个国家就麻烦了。”“我相信你一定收到了很多来自高中生和大学生的来信。或许你应该记下几个来信地址,好在将来专栏出问题时请教他们。
”“我希望这次的争议能够让公众意识到我们国家的教育危机……到底还需要多少个盛怒的数学家才能改变你的想法?”“或许女人看待数学问题的方式和男人不一样。”“你就是那只山羊!” 玛丽莲笑到了最后。她倡议全美国的数学课堂用纸杯和硬币模拟三门问题,并获得了中小学老师们的支持:毫无疑问,改选第二扇门将获奖概率提升了一倍。
在正确答案终于被确认无误后,有人提出了一些简单的、基于直觉的推理来方便人们理解,但这些推理往往又在对题目稍加改变后失效。时至今日,学者们仍然对人们给出错误答案的原因津津乐道。这一看上去很简单的趣题,却从各方面给了人们十足的挑战。