如果你对量子力学的概念感到困惑,不要慌,我相信你并不是唯一的一个。正如物理学家费恩曼所说的:“我想我可以有把握地说,没有人理解量子力学。”然而,量子理论却渗透到我们生活的方方面面,它描述了我们生活的这个世界是如何运作的。例如,我们每天沐浴在太阳光之中,你可曾思考过为什么太阳会发光?如果你不懂量子力学,就无法理解其中的奥妙。下面,通过十个问题,我尽量用最简洁的语言带领读者理解量子力学背后的基本思想。
什么是量子力学?千年以来,科学家一直在追问一个最基本的问题:物质是由什么构成的?现在我们知道所有的物质都是由电子和夸克构成的,它们都是基本粒子。所谓的基本粒子是指它们不能由更小的粒子构成。正是这些基本粒子组成了原子,比如氢和氧,以及分子,比如H₂O。原子:由电子和原子核构成。原子核由质子和中子组成,而这两者又分别由夸克组成。原子和分子是构成这个世界的乐高积木。
为了理解这个微观世界是如何运作的,科学家就需要运用量子理论。这个理论有许多非常诡异的预言(比如粒子可以同时处于两个不同的地方),但它同时是物理学中最经得起考验的理论之一。它是支撑我们身边见到的科技的基础,包括你现在正在使用的手机中的芯片,也是智能手机之所以智能的原因。它很奇怪,但它是对的,而且非常重要。
等等,说了半天,“量子”究竟是什么意思?
你拿着一罐花生酱走到厨房中,你可以决定把它放到操作台面,或着台面上架子的某一层。但你不能把花生酱放在架子的层与层之间。在物理学上,厨房的架子的层就是所谓的“量子化”。意味着它们是有级别的。在量子世界,所有的东西划分成不同的级别。举个例子,原子中的一个电子可以处于其中众多“能级”中的一个,能级就像厨房中的架子上的不同层。在量子世界中,只要用正好的能量将电子踢一下,它就会立马从一个能级跳到另一个能级。
这叫做量子跃迁。
经常听到经典力学和量子力学,它们的区别是?微观世界所服从的一套规则跟我们习惯的“经典”世界非常不同。物理学家所谓的“经典”相对于“常识”,也就是某些东西的行为方式跟你日常经验中所预期的一样。一个台球就是一个“经典物体”(它在桌子上会直线的滚动),但是一个单独的原子则服从量子规则(很容易在绿色的桌面随时消失)。
当有足够多的原子结合在一起,奇怪的量子效应就会逐渐消失,它的行为又变得经典了。这就是玻尔的“对应原理”。
什么是海森堡不确定性原理?在量子物理中,有一些东西基本上是不可知的。例如,你不可能同时知道一个电子在哪里以及它要去哪里。也就是说,不可能同时精确地确定一个粒子的位置和速度,这就是海森堡不确定性原理。理解这个原理的其中一个方式是通过相关的观测效应——对一个系统进行测量时如何改变其结果。
举个例子,为了找出电子在哪里,你必须用某些东西(比如组成光的光子)来探测它。但是,为了探测电子的位置,光子又会改变电子的运动方向。虽然电子告诉了你它的位置,但却不知道它接下来要去哪里。
什么是波函数?量子力学的核心方程是薛定谔方程,它就好比是牛顿第二定律在经典力学中的位置。该方程的解即为波函数 Ψ(x,y,z,t),括号中的x,y,z代表三维的情形。量子波函数可以有许多可能的解。令人称奇的是不同的可能解看起来可以相互作用,形成处于中间或不定的状态,称为叠加态。好像它们结合在一起才能正确的描述我们宇宙的现实。
可不可以多解释一下什么是叠加态?好像跟一只猫有关?
试想一下,将一只猫关在一个盒子里,并装有一小瓶的氰化物。在瓶子上有一根用弦吊住的锤子。如果有一个随机的量子事件发生(比如,铀原子的衰变),就出使锤子落下打碎装有氰化物的瓶子。1935年,奥地利物理学家薛定谔提出了这个思想实验来传达叠加态的概念。原子的衰变服从量子定律,因此它的波函数有两个解:衰变和不衰变。如果铀发生衰变,就会打碎装有氰化物的瓶子,猫就会死;如果铀不发生衰变,猫就存活。
从量子力学的角度来看,在我们打开盒子之前,放射性的铀处于衰变和没有衰变两种状态的叠加,猫处于生或死的叠加态,这就是所谓“薛定谔猫”。
前段时间中国发射的量子卫星也一直提到了“纠缠”这个词,那究竟什么是纠缠?纠缠是指两个粒子(比如光子)间的联系,当你对其中一个进行测量,会立即对另一个产生影响,无论它们相距多远。
量子纠缠,只要对其中一个粒子进行观测,你就立即可以知道另一个粒子的状态,尽管它们可能在宇宙的两端。打个比方,现在我的双手各有一颗不同颜色的弹珠,我把双手伸到身后随意交换弹珠。从你的观点来看,这两个弹珠是“纠缠”的,如果红色的弹珠在我的左手,这意味着蓝色的就在我的右手。但是在量子的情况下这更加神秘,因为弹珠是没有确定的颜色,它们可以是红色和蓝色的概率是一样的,完全是随机的。
奇怪的是,当你看到其中一颗弹珠的时候,就抹杀了这种随机性。不单单是你看的那颗,而是两颗。如果你看到一个红色的弹珠,你就知道另一个是蓝色。因此,一个纠缠的粒子会立即影响另一个,无论相隔多远。爱因斯坦认为这违反了相对论所限制的宇宙的速度极限(光速),因此将纠缠标签为“鬼魅般的超距作用”。
那物理学家是怎么让光子纠缠的?有几种不同的方法。其中一种是将一个高能的光子分裂成两个低能的“子光子”。就像是两个完全一样的双胞胎,它们之间拥有着神秘的联系。另一种方法是让两个光子通过迷宫般的镜子,所以你就无法知道它们会在哪个方向传播。这个“不可知性”就创造了纠缠。
量子力学中有没有什么著名的实验?量子力学中最著名的实验我想莫过于双缝实验。
实验的设置很简单:把粒子(通常是电子或光子)打向一面有双缝的屏幕,在双缝后面还有个探测屏幕。这个实验之所以出名是因为它描述了上面我们提到的许多奇怪现象。我们首先在水中进行双缝实验。很简单,你只要用手指在水中滑动就可以制造出波。这些波通过双缝的时候会相互干涉,形成显著的干涉条纹。这是波的行为。现在,把实验从水中挪出,用子弹射向双缝。你在屏幕后看到的是两条并排堆积而成的子弹,而不是干涉图案。
这是粒子的行为。精彩的来了,如果你把电子射向双缝,会发生什么?如果你预期电子是粒子,那么你在探测屏幕看到的情形就跟子弹的一样。但事实呢?我们看到电子会在探测屏幕产生干涉图案,就好像每个电子都同时通过双缝一样,并且相互干涉。这似乎暗示着电子是波。由于电子是量子物体,我们无法知道它的位置(海森堡不确定性原理)。电子有一定的概率会通过其中一条狭缝,有一定的概率会通过另一条。
由于通过两条缝的概率是一样的,它事实上同时通过两条狭缝(叠加态)。电子的行为又像粒子又像波,这种所谓的波粒二象性简直让人抓狂,但又让人着迷。现在你可能会开始思考,难道我们不可以想方设法知道电子是通过哪条狭缝吗?当然可以,我们可以在某处放一个光源,监测电子是从哪条狭缝通过。但是,一旦这么做,我们会发现原先的干涉图案就立马消失了!!!也就是说,一旦进行观测,波函数就“坍缩”了。
由于你知道了电子通过哪条缝,它就不再处于叠加态,所以它只通过了其中一条。电子的波的行为就消失了,它表现就如同子弹般。如果你现在感受脑子不好使了,这很正常,因为物理学家也绞尽脑汁的想要解释这看起来显而易见的悖论。
物理学家对此有什么解释吗?记得我刚接触量子力学的时候,我对许多现象都无法理解。为了消除我脑海里的疑问我不停的向教授提问。当然,教授通常的建议是:“先不要问,只要懂得计算就行”。
一旦我采纳了这个建议,个人的经验发现量子力学要比经典力学容易的多。但这并不是一个正确的态度。的确也有许多物理学家只对答案有兴趣,而拒绝去思考到底发生了什么。其实一旦你去思考这背后的原理的时候,你就会发现量子力学的无穷魅力。下面我简单的列出三个对量子力学的精彩诠释:多世界诠释认为,当我们对一个系统进行观测时会分离出无数个平行宇宙,每一个都是波函数的一个可能解,而我们只是在一个特定宇宙。
哥本哈根诠释则认为,在观测之前,电子是没有确定的位置的。每个电子都像波一样分散开来,同时穿过两条狭缝,它们相互干涉在探测屏上产生了明暗条纹。但只要观测者试图知道电子是从哪条缝通过时,该观测瞬间将电子的位置“坍缩”至一个点,破坏了干涉的发生。也就是说,观测会导致波函数的坍缩。
德布罗意-玻姆理论,又称为导航波理论,在玻姆力学中,量子物体被当做是经典粒子,电子始终拥有确定的位置,即使该位置无法被观测者察觉。该电子的位置会受到“导航波”推动的影响。一个电子只能穿过一条狭缝,但导航波同时穿过两条狭缝。导航波的干涉带来了探测屏幕上的干涉图案。在狭缝的测量会导致导航波的“坍缩”,因此就可以知道电子的路径了。至此,通过这些基础的了解,希望你开始对量子力学产生一定的兴趣。
或许可以尝试阅读《量子力学的核心——薛定谔方程》,也可以阅读曹天元的著作《上帝掷骰子吗:量子物理学史话》,当然,不要如果你想掌握量子力学这门学科可以从《费恩曼物理学讲义》(第三卷)开始。