为什么一些癌症不会转移,另一些癌症却会脱离束缚,转移到全身?紧密堆积的细胞中蕴含着的物理学原则可能会帮我们攻克癌症转移的难题。
1995年,当生物医学家Peter Friedl还是加拿大麦吉尔大学的一名研究生时,他观察到了一些令人惊奇的现象:他在实验室培养的癌细胞会以集群的方式在模拟人体细胞生存空间的纤维网络中整体移动,这一发现使他兴奋得夜不能寐。
一个多世纪以前,科学家已经发现单个癌细胞可以离开原肿瘤部位,通过血液和淋巴系统迁移到身体的其他部位,然而没有人曾观察到Friedl在显微镜下观察到的现象:一群排列紧密有序的癌细胞像一个整体一样移动。
20年后,越来越多的生物学家认同了这样的观点:虽然以集群方式移动的癌细胞比单个在循环系统中迁移的癌细胞少,但很多,甚至是大多数致死性的癌症转移(90%的癌症患者死于这种转移)都是由集体迁移造成的。
不过,直到2013年,在荷兰奈梅亨大学的Friedl才真正理解了他和同事以前观察到的现象。读了哈佛大学生物工程与物理学教授Jeffrey Fredberg的文章后,他多年的困惑与不解一下子消除了。Fredberg教授的文章指出,细胞可能会发生“拥堵”的现象——它们紧密地挤在一起,以至于形成了一个整体,就像咖啡豆卡在漏斗中一样。
长期以来,物理学家为医生提供了许多对抗肿瘤的工具,比如辐射与质子束等等,但是直到最近才有人认真考虑这样一种观点:纯粹的物理概念或许也能帮助我们理解世界上致死率最高的现象之一——癌症转移——背后的生物基础。在过去的几年里,研究细胞转移的物理学家已经能够以惊人的准确率预测细胞行为。
虽然这些研究仍处在发展初期,但支持者乐观地相信,研究诸如“拥堵”这样的相变(物质状态的改变),会在对抗癌症中扮演着越来越重要的角色。
生物学家通常将癌症视为基因程序出错的结果,突变与表观遗传上的变化使细胞出现了异于常态的的行为:控制细胞分裂与生长的基因可能开启表达,而控制细胞程序性死亡的基因则被关闭。然而,对于一些物理学家来说,癌细胞形状变化与行为改变导致的并非错误的基因程序,而是物理上的相转变。
1998年,美国宾夕法尼亚大学的物理学家Andrea Liu和芝加哥大学的物理学家Sidney Nagel 在Nature杂志上发表了一篇论文以解释 “拥堵”过程。在文章中,他们描述了大众所熟知的例子,比如交通拥堵、沙堆、卡在漏斗中的咖啡豆等等,在这些例子中,个体都是因为外部力量而聚集在一起以至于看起来像一个整体。
对于拥堵现象,Liu和Nagel提出了一个大胆的前所未有的想法:拥堵其实是一种之前没有被发现的相变。
越来越多的科学家认识到,除了遗传之外,力学因素对于细胞行为也起着重要的指导作用,Fredberg和同事发表的论文正是其中的代表。Fredberg说:“人们曾经一直认为,在决定细胞行为的一系列因素中,力学规律处于最下游,最上游的决定因素是遗传学与表观遗传学因素。但是后来人们发现,物理外力和力学过程实际上可能位于遗传因素的上游,也就是说,细胞可以很好地感知它们周围的力学微环境。”
美国雪城大学的物理学家Lisa Manning读了Fredberg的文章后,决定实践他的这一想法。她和她的同事利用了一个二维模型,在该模型中,细胞间紧密接触,填充了整个空间。这一模型产生了一个序参量(指量化材料内部有序程度的可测量数值),她们称之为“形状指数”(shape index),形状指数将细胞的一个二维切面的周长与它的总表面积联系在一起。
与此同时,德国莱比锡大学的物理学家Josef Käs也在试图探究“拥堵”是否可以帮助解释癌细胞的一些令人费解的行为。他从自己的和他人的研究中发现,虽然乳腺肿瘤和宫颈肿瘤的大部分呈固态,但是它们内部仍包含柔软、可移动的细胞组织,这些细胞会渗入周围的环境。
Käs立刻想到,如果这些癌细胞的流动确实是由非拥堵相变引起,就能产生一个潜在应用:利用基于肿瘤细胞拥堵状态检测的活体检查,或许就能鉴定出肿瘤是否即将转移,而不必再利用已使用近一百年的目视检查手段。
除了临床应用,“拥堵”概念的支持者认为,“拥堵”还能够帮助解决癌症生物学中一个引起热议的概念性问题。
几十年来,肿瘤学家怀疑癌细胞要发生迁移,首先需要经历细胞类型的转变过程——从构成实体瘤主体的、有黏连性的上皮细胞,转变为更为纤细的、运动能力更强的间充质细胞——科学家经常发现这种细胞在癌症患者血液循环系统中单独移动。
然而,随着越来越多的研究结果报道出类似于Friedl观察到的以集群方式迁移的细胞,研究人员开始怀疑,独自迁移的间充质细胞,即Friedl所称为的“孤独的骑手”,或许并不是杀人百万的癌症转移的背后起源。
发展这一理论的关键在于,要充分考虑介于两个极端之间的一系列中间态细胞。Manning说:“在过去,解释癌症力学行为的理论要么以固态的实体瘤为主体,要么以‘液态’的迁移癌细胞为主体,现在我们需要考虑到这样的事实:癌细胞其实大多处在两个极端状态间的过渡态。”
细胞拥堵的模型虽然很有实际应用价值,但是并不完美。例如,Manning的模型目前仅能应用于二维空间,但肿瘤是三维的。Manning现在致力于三维细胞运动模型的构建。她说,到目前为止,三维模型似乎已经能够预测到类似于二维模型中的液-固过渡态。
此外,细胞并不像咖啡豆一样简单。肿瘤或组织中的细胞通常能够以复杂的方式,例如基因程序或其他反馈环路,来改变自身的力学性质。如果拥堵概念能够为癌症提供一个坚实的概念基础,那么它必须有能力解释这样的行为。加利福尼亚大学旧金山分校生物工程与组织再生中心的主任Valerie Weaver说:“细胞不是被动的,它们会对内外环境持续响应。”
如果“拥堵”和相变理论在未来能够继续成功解释研究者观察到的细胞及组织行为,物理与生物学科间的代沟必将进一步缩小。Fredberg认为:“如果越来越多的证据表明细胞的集体运动是由‘拥堵’造成,那么‘拥堵’概念被生物学界认可并写进教科书只是早晚的事。”