81次获提名,诺奖界无冕之王搅动流体江湖风云(上)

作者: 潘玉林

来源: MIT科研范

发布日期: 2016-09-27

本文讲述了德国理论物理学家阿诺德·索末菲在量子力学与原子物理学领域的开创性贡献,以及他在流体力学中关于湍流触发机制的研究历程。索末菲虽在量子力学领域成就卓越,但在流体力学的研究中却遭遇了重大挑战,尤其是在解决平行流动中的湍流问题上,他穷尽数十年之力仍未能找到满意的解答。

阿诺德·索末菲 (Arnold Sommerfeld), 德国理论物理学家,量子力学与原子物理学开山始祖之一。提起这个名字,我们的思绪难免会回溯到一个世纪前那场波澜壮阔的量子革命。在那段星光璀璨的岁月里,索末菲的慕尼黑学派与尼尔斯·玻尔 (Niels Bohr) 的哥本哈根学派以及马克思·波恩 (Max Born) 的哥廷根学派交相辉映,共同谱写了现代物理学最激动人心的篇章。

在索末菲的众多弟子中,走出了五位诺贝尔奖获得者,其中包括了沃尔夫冈·泡利 (Wolfgang Pauli) 和维尔纳·海森堡 (Werner Heisenberg) 等开宗立派的大师。而他本人则被提名了八十一次之多,可谓诺奖界的无冕之王。

相比于在量子力学上全明星式的表现,索末菲学派在其他经典物理领域的贡献无疑显得微不足道。然而,我们今天要讲的,正是索末菲学派与一门经典学科之间的渊源与纠葛。世人皆惊叹于大师们在虚幻鬼魅的量子世界中天马行空的想象和洞若观火的解析,却未必知道,曾有这样一个经典力学的问题,困扰了整个学派数十年之久,穷两代人之力,亦无法给出一个满意的解答。在索末菲学派的鼎盛时期,这个问题让众多英才们如鲠在喉,心结难解。

这门学科,叫做流体力学;而这个问题,则是平行流动中的湍流触发机制。故事要从奥斯鲍恩·雷诺 (Osborne Reynolds) 那次著名的实验讲起。1883年,雷诺在管流实验中发现,管道中流体的流动可以呈现两种截然不同的流态。当流速较低时,流体质点的轨迹线互相平行,互不掺杂,呈现层状流动的状态。当流速高于一个特定临界值时,流体质点的轨迹线开始变得紊乱,不规则的侧向脉动,流场中的漩涡也相伴出现。

前者被称为层流,后者被称为湍流。可是,湍流为什么以及何时会产生?现象背后的机理究竟是什么?这个问题,雷诺却百思不得其解。十余年间,无人理出任何头绪。索末菲对这一问题的研究始于1900年。这一年,索末菲32岁,已是亚琛工业大学的教授。

在之前的人生中,他受到过费迪南德·林德曼 (Ferdinand Lindemann)、大卫·希尔伯特 (David Hilbert)、埃米尔·维舍特 (Emil Wiechert) 和菲利克斯·克莱因 (Felix Klein) 等数学、物理大师的栽培和点拨;此时的他,身兼数派,底蕴浑厚;六年之后,他将接任慕尼黑大学理论物理系的掌门人,在那里建立他的索末菲学派,名震江湖,睥睨天下。

索末菲清楚地记得,在克莱因谈到雷诺的实验时,写下了这样一段话:“可以试图这样解释湍流模态的发生:当流速高于一个临界值时,层流的平行流动是一种不稳定的状态。这个不稳定性发生的原因却是不清楚的。”克莱因认为,湍流的发生机理可以转化为一个稳定性分析问题。当管流流速高于临界值时,层流变成了一种不稳定的状态,一个微小的扰动就足以将规则的层流破坏殆尽,使流场进入紊乱的状态。

这正如常人站在钢丝之上,有一点风吹草动就会失去平衡。然而,如何从数学上描述这种不稳定状态呢?在索末菲思考这个问题的过程中,他有一个坚定的伙伴——亨德里克·洛伦兹 (Hendrik Lorentz)。此人可谓是当时物理学界的全才,他推导的洛伦兹变换后来成为了阿尔伯特·爱因斯坦 (Albert Einstein) 狭义相对论的数学基础,他本人也因对塞曼效应的解释于1902年获得诺贝尔奖。

索末菲最初的想法正是始于洛伦兹在1897年发表的一篇文章。文章中,洛伦兹推导了在层流场中叠加一个小扰动后流场能量的变化,索末菲循着这一思路展开了自己的研究。然而,他很快便发现这种方法走入了死胡同。索末菲在他寄给洛伦兹的信中苦恼地诉说了这一境况,并在随后的1903年的一次公众演说中谈到:“这似乎意味着理论流体力学体系在解决实际问题时的失效。

至今仍然没有一种精确的理论方法可以计算出这个临界速度以及流速超过临界值时的压力梯度。”失望之余,索末菲的思考并没有停止。物理学的研究总是在山重水复中峰回路转,曲径通幽。1906年,当索末菲读到一篇关于板壳变形失稳的文章时,意识到类似的方法或许适用于那个一直困扰自己的问题。于是,他开始着手建立这种经典的微扰动理论运用于平行流动稳定性时的数学模型。

然而,这一次他发现,虽然建立了方程,却无法找到方程的解。数月之后,在给洛伦兹的信中,他再次提到:“可惜在解决流体力学临界速度这个问题上我仍然一无所获。”尽管身兼当世数位数学大师之长,但在接下来的两年里,索末菲面对这个方程仍然一筹莫展。此时,年过不惑的索末菲体力渐衰,已有心余力绌之感。但是他决定,为这个问题再做一次努力。这一次,他决定集江湖各派之力。

于是,索末菲将他近十年来对流动稳定性问题的思考写入了一篇文章,寄往在罗马召开的第四届国际数学大会。这篇文章以对雷诺的致敬开篇:“假设 ρ 为流体密度,μ 为流体粘性,U 为通过流动横截面的平均流速,b 为管道直径,那么 R=ρUb/μ 则是一个无量纲的纯数字,我们称之为雷诺数。

”今世的各位流体力学家们大概不知道,整个流体力学中最重要的无量纲数——雷诺数 (Reynolds number) 正是在这篇文章中第一次得以命名。后来的研究发现,正是这个由管流密度、粘性、速度和直径组合得出的无量纲数的大小,决定了流动的状态。与其说存在一个临界速度,更准确的说法应是存在一个临界雷诺数 Rc, 当 R>Rc 时流动便由稳定转为不稳定,层流转为湍流。

索末菲继续写道:“我们运用经典的小扰动方法来解决这个问题,但我们的方法与洛伦兹所用的完全不同。

”接下来,索末菲写下了那个集自己数年之力想出的奥尔-索末菲 (Orr-Sommerfeld) 方程:这个方程是在流体力学基本方程纳维叶-斯托克斯 (Navier-Stokes) 方程上叠加微小扰动后线性化所得到的,描述的是在已知的层流速度剖面 U(y) 上叠加振幅为 Φ(y) 的微小扰动后,扰动随时间的变化。如果对于某一特定的雷诺数,任意扰动都随时间衰减,那么这个流动就是稳定的。

反之则流动是不稳定的。而在数学上,要表达上述物理描述,仅需两步:(1)找到微分方程的解 Φ(y) ;(2)根据边界条件下解的存在性条件列出特征方程,从中找到扰动随时间的变化规律,以及临界雷诺数 Rc。寥寥数语,天下无人能解。索末菲可能也不会想到,自己写下的这个方程,将会在接下来的数十年里困扰着自己的学派,乃至整个数学和物理界。当然,我们现在这么说是有失偏颇的。

当时的索末菲,思路远没有这么清晰,甚至对这个方程式是否可以有效的描述湍流的发生,也没有十足把握。正如今天连中学生都熟知的“牛顿三定律”,也是三百年前经过几代人的思考和提炼才得出的。就在这次罗马会议的两个月后,索末菲对自己的方程深感无力,在给同事的一封信中,他写道:“我已经被湍流问题折磨的心力交瘁,几乎将我所有的时间都献给了这个问题,但我始终无法解决它。”索末菲个人的挑战,宣告失败。

天下风云出我辈,一入江湖岁月催。欲知后事如何,且听下回分解。

UUID: abcf81c0-a8d9-49af-84c3-c3731d64ab1b

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/知识分子公众号-pdf2txt/2015-2016年/2016-09-27_81次获提名,诺奖界无冕之王搅动流体江湖风云(上).txt

是否为广告: 否

处理费用: 0.0077 元