一个巨大的进步:国际著名科学家评中国首颗量子科学实验卫星

作者: 林梅

来源: 知识分子

发布日期: 2016-08-16

2016年8月16日,中国首颗量子科学实验卫星“墨子”成功发射,标志着全球量子通信技术迈出重要一步。卫星的主要任务包括星地量子保密通信、星地量子纠缠分发和星地量子隐形传态等实验,旨在验证量子力学基本原理并推动全球量子互联网的发展。

2016年8月16日凌晨1:41,备受瞩目的中国首颗量子科学实验卫星“墨子”在酒泉成功发射升空。这颗卫星肩负着怎样的使命?它的科学价值是什么?全球的量子信息研究格局是否会因此改变?国际同行如何看待全球首颗量子科学实验卫星的发射?《知识分子》特邀部分国际同行对全球首颗量子科学实验卫星发表评论。

对于量子信息研究来说,地面上的量子通信应用进展迅速,但自由空间量子通信还很落后,所以卫星在太空中实现量子通信实验是一个巨大的进步。中国的量子空间卫星将为全球量子通信系统提供一个试验台。事实上,此次太空中有一些开放的实验项目我们是很感兴趣的。

我们正在与QUESS(Quantum Experiments at Space Scale,空间尺度的量子实验)的团队进行合作,我们负责搭建欧洲的地面站。合作进行得很顺利。在我看来,中国和奥地利之间实现洲际量子密钥分发将是最有趣的。未来,全球范围的量子互联网必然包括地面网络连接和空间网络连接,而QUESS将首次提供洲际网络链接。

在太空上远距离地对量子力学的预测进行检验,我认为这将是非常有趣的一项试验。我特别感兴趣的是(即便在这颗卫星上无法实现),让人类观测员进行“贝尔-EPR”的测试;假设他们的报告能够得出明确的结果,那么这就会为客观的定域性理论等此类问题的“棺材”上钉上最后一根钉子。

“如果能弄明白为什么会有量子纠缠,我立即死都愿意。”中国科学技术大学物理学教授潘建伟不久前在央视《开讲啦》曾这样表示。20多年前,潘建伟因对量子力学着迷而选择了从事量子光学、量子信息和量子力学基础问题检验的研究。“墨子”的升空,在科学上将进一步检验量子力学基本原理。

量子态叠加是指粒子可以同时处于不止一种状态的相干叠加。例如,同一时刻,电子自旋方向可以既是顺时针又是逆时针,或者原子同时处于激发态和基态。而量子纠缠是指,两个微观世界的粒子可以具有某种状态上的关联,无论它们距离多远,只要其中一个被测量到处于某种状态,另一个也会在同时塌缩到某种状态。

科学家现在还无从得知量子叠加的机制,但这一现象早已被实验证实并走向应用,其中,量子密钥是发展最为迅猛的一个。在人类的通信史上,信息传递得更快、更远、更安全、更高效,一直是人类追求的方向。而以量子理论为基础的量子通信技术,以其绝对的保密性能,被看作是未来保障信息安全的有力工具。

基于自由空间的量子通信技术则成为当前实现全球量子通信网络的一个最优选择。考虑到地球曲率、传输距离、大气、天气等影响,在地球表面,100公里级别的自由空间的量子密钥分发几乎已经是极限,于是,基于低轨卫星中转的量子通信可谓实现目标的最佳方案。

中国此次发射的量子卫星主要任务是将地面上的量子纠缠实验“搬到”外层空间,即通过连接地面上的量子通信网,完成星地量子保密通信、星地量子纠缠分发、星地量子隐形传态等实验。可以说,这颗量子卫星肩负着科学和技术的双重使命。

完整的空地一体广域量子通信网络体系的构建,在国防、政务、金融和能源等领域将率先加以广泛应用,与经典通信网络进行连接,形成具有国际引领地位的战略性新兴产业和下一代国家信息安全生态系统。

更进一步,未来若发射更多的量子通信卫星,空间卫星有望形成网络,那时基于卫星网络的全球化量子通信可能成为现实。通过卫星组网,可以有效突破地影区限制,星载量子存储、星间量子中继、超远距离量子纠缠分发都可以通过卫星网络实现。

我们甚至可以大胆想象,有一天,互联网将以量子计算机作为节点,通过量子信道进行连接,量子网络中传送的信息大部分不再是经典的0或1,而是由量子态,高效率的量子计算配合高保密的量子通信,“量子互联网”得以实现。

UUID: f8e03366-517b-4637-96e1-8b8641eef79f

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/知识分子公众号-pdf2txt/2015-2016年/2016-08-16_一个巨大的进步:国际著名科学家评中国首颗量子科学实验卫星.txt

是否为广告: 否

处理费用: 0.0072 元