网球拍的“甜区”分析

作者: Fabio Bocchi

来源: COMSOL

发布日期: 2016-08-15

本文详细分析了网球拍中的“甜区”概念,包括振动节点、撞击中心和功率点,解释了这些区域如何影响击球体验和球拍设计。

每年,来自全球各地的网球运动员都会齐聚美国网球公开赛,这也是网球界历史最悠久、规模最大的网球锦标赛之一。随着2015网球锦标赛的临近,我发现我又想起了自己打网球的一些经历,每次击球的体验都不太一样。这只是我们自己的主观感觉?还是其背后也存在对应的物理解释?在本篇博客中,我将说明如何用所谓的“甜区”来解释这种感觉。

根据机械振动理论,振动节点指当有波传过时不会发生位移的点。

由于波是由于球撞击球拍产生的,球拍转而会开始振动摇摆。当球拍的一端被运动员握在手中时,查看球拍的振型,此时可以找出振动位移为零的点,即在振动期间内任意时刻的振幅为零。下面是用COMSOL Multiphysics计算得到的三种不同振型:从左到右、从上到下的顺序分别表示网球拍的前三种振型。基础振型的频率为15 Hz;第二种振型的频率为140 Hz;第三种振型的频率为405 Hz。

如上所示,许多点都表现出了这一行为。那为什么我说的好像只存在一个振动节点呢?现实中其实存在无穷多的振动节点。当受到撞击后,球会产生无数个不同频率的谐波。一次会激活无限数量的频率,但哪个振动节点才是“甜区”呢?是基振节点还是不同谐波交叉后产生的节点?

很显然,基础振型节点不会是甜区:它位于手柄处。您可以尝试用手柄击球过网。运气非常好的话可能会成功,但这个概率非常低。同时,第二个振型还包含两个节点:一个位于手柄处,另一个位于靠近拍头处的网线处,后者被认为是甜区。用这一点击球时,所有球员基本上都不会感觉到振动。

当然,更高振型下也存在振动节点,如上方得到的第三种模式所示。但随着振型固有频率的增加,振幅将显著下降。下图显示了一个梁结构对持续5 ms的正弦式载荷的频率响应,这相当于球撞击球拍的时长。对于高于300 Hz的频率,振幅几乎为零。也就是说,第三种振型或更高频率振型的影响可以忽略。不论球撞到哪个位置,即使是在振型达到最大振幅的点,更高的振型由于没有任何激发,所以不会带来任何影响。

当网球击中球拍某点时,如果没有其他作用力,球拍将沿指向另一端的轴线旋转。随着在击点处球与球拍的质心距离逐渐接近,击点与旋转轴的距离将会缩短。当球正好撞到质心时,球拍将发生平移而非旋转。从数学角度来看,旋转的中点位于球拍的无穷远处。

即便如此,我们还是能找出一个撞击位置,它将在靠近手柄的端点处产生一个旋转中心,也就是选手的握拍位置。我们可以在质心的特定距离处找到一个位置,当球撞击球拍上的这个点时,会得到一个靠近手柄端点的旋转中心。这一点被称作撞击中心(COP),有时也会被看作一个甜区。当球拍沿靠近球柄端点的旋转中心旋转时,会绕开选手的手,因此手不会受力。

我们有时也将功率点称作第三个甜区,它是最佳的弹跃点。换言之,球接触到这个点后会产生最好的弹性。从数学的角度来看,功率点定义为拥有最高回弹系数(COR)的点,COR就是回弹高度与球的入射高度之比。回弹系数是所有会影响球速的设计元素综合作用的结果,所以非常重要;它还为我们提供了一个综合视角来考察所有因素,设计工程师将无需单独了解每个参数的影响。

功率点位于球拍的拍喉处,靠近质心。该点与拍喉的距离越近,刚度越高,由于球拍变形造成的能量损耗越低。当球击中球拍时,冲击能会分为球、球拍及网球线上的动能和弹性能(变形能)。功率点处的变形很小,因此球拍能将几乎所有的动能传回球。

博客所介绍的球拍中最后一个很有意思的点是哑点。球击中哑点时,完全不会发生回弹。球传递的所有能量会传到球拍,不会有能量返回到球上。这是由于球拍在哑点处(通常较靠近端点)的等效质量等于球的质量。从力学的角度来看,哑点处产生的力与加速度之比等于球的质量。

我们已经深入了解了这三个相当出名的球拍甜区背后的物理含义。在振动节点,传递至网球选手及手臂处的不适振动最少。在打击中心点,对运动员手臂的初始冲击也是最小。最后,在功率点,球会以最快的速度发生回弹。

UUID: 716f3bbc-e7f2-4fbc-a4bf-d3f408e1afe8

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/环球科学公众号-pdf2txt/2016/2016-08-15_网球拍的“甜区”分析.txt

是否为广告: 否

处理费用: 0.0049 元