神经网络画的Doge那么魔性,是因为它认知世界的方式和人类截然不同,但究竟不同在哪儿仍然有待解决——至少,在放手让神经网络帮我们开车前,我们必须弄懂它们的想法。
从曼努埃拉·维罗索(Manuela Veloso)位于布鲁克林一栋写字楼19层的办公室窗口向外望出,美景动人心魄——湛蓝的天空、纽约港和自由女神像。然而此刻,吸引我们目光的却是对面大楼毫无特色的窗玻璃。
近年来,人工智能已经以无情的速度攻克了很多难题。在过去几年中,一种以高效著称的人工智能——“神经网络”——已经在一些领域里赶上、甚至超越了人类,包括研发新药,挑选最佳工作候选人,甚至还有驾驶汽车。
神经网络的应用日益广泛,不仅在随处可见的日常领域中,比如谷歌的搜索引擎、亚马逊的推荐目录、脸书的好友动态和垃圾邮件的过滤,还有军事、金融、科研、比人类驾车更靠谱的自动驾驶等重要工作。
神经网络有时会犯一些人们可以理解的错误,但另外一些难题,却会让它们给出让人难以理解的回答。神经网络的运作方式,是执行算法——关于如何完成任务的指令。算法当然是由人类写成的,但有时,神经网络会得出十分诡异的结果:不正确,但也不是人类能理解的那种错误。
这种诡异的运行结果并不多见,但它们也并非随机差错。最近,研究人员已经设计出了可靠方法,能让神经网络一遍又一遍得出这种诡异的非人类结果。这表明我们不应该假设我们的机器会用我们的思维方式思考。
神经网络感知与推理的方式与人类的差异或许能向我们揭示,在人类的物种限制之外,智能是如何运作的。阿尔伯塔大学的人工智能研究者约瑟夫·莫达伊尔(Joseph Modayil)认为,计算机或许也会给智能领域带来类似的颠覆。
然而,我们首先要确保自动驾驶车辆不会把校车错认成橄榄球队服,也不会把照片中的人类标记成大猩猩或者海豹(谷歌的一个神经网络最近就犯了这个错误)。过去几年来,许多计算机科学家痴迷于这个问题以及可能的解决方案,但他们仍未找到。
深度神经网络很好骗。杰夫·克鲁(Jeff Clune)是怀俄明大学计算机科学系的助理教授。偶遇了几次神经网络的怪异行为后,他在最近开始了相关领域的研究。
神经网络是机器学习的一种形式,它通过分析数据而得出结论。而机器学习不仅仅被用于可视化任务,普林斯顿大学信息技术政策中心的博士后研究员索伦·巴罗卡斯(Solon Barocas)说。
这些荒唐的结果并不能用个别系统偶尔抽风来糊弄过去,因为能让一个系统跑偏的例子们也会对其他系统造成同样的结果。读过《深度神经网络很好骗》后,人工智能研发公司Vicarious的联合创始人迪利普·乔治(Dileep George)很好奇别的神经网络会作何反应。
神经网络的运作方式,是执行算法——关于如何完成任务的指令。算法当然是由人类写成的,但有时,神经网络会得出十分诡异的结果:不正确,但也不是人类能理解的那种错误。
神经网络最早提出于20世纪40年代,是一个粗糙的软件模型,用来模拟大脑皮质——大部分感知和思考发生之处。作为人类大脑中物理神经元的替代品,神经网络运行的是由代码组成的虚拟神经元。
神经网络比大脑简单多了。但随着近年来计算机处理能力的提高,提供样本的大数据集越来越容易获得,现在的神经网络也能实现类似的成果。它们的层级化处理方式能从海量数据中识别出模式,运用这些模式,将“猎豹”或“海星”这样的标签同相应的图片联系起来。
这个体系的缺陷是,当机器将电视机的雪花屏判定为猎豹时,计算机科学家的手里并没有机器将它认成“猎豹”时所用的判断标准的清单,好让他们可以据此搜寻出系统判断失灵的原因。
神经网络长久以来都被称为‘黑箱’,因为要理解某个具体的、经过训练的神经网络究竟如何工作非常困难;有太多相互作用着的、非线性的部分了。
正当研究者们奋力钻研为何用于锤炼算法的大量数据集仍无法反映出他们期待的现实时,另一些人则想到,这些仿佛是由算法们臆想出的奇怪规则或许揭示出了现实的一些层面——我们凭自身的感官无法察觉到的层面。
对研究者们来说,这听起来很像是一种艺术。因此,他们将一些图片提交给了怀俄明大学艺术博物馆为一场展出举办的比赛。35%的投稿作品被评委接受并展出了,算法的作品也是其中之一,之后还在博物馆获了奖。
无论如何,对机器“头脑”更深入理解的需求不仅来自研究者们对神经网络的困惑。理解神经网络,对于整个人工智能界,以及以此为基础运行的社会来说,都是一项挑战。