科学美图!Brainbow:荧光点亮神经彩虹

作者: FranklinWhite

来源: 果壳网

发布日期: 2015-08-30

本文介绍了Brainbow技术,这是一种通过荧光蛋白标记神经细胞,使它们呈现出五彩光芒的技术。文章详细描述了荧光蛋白的发现、改造及其在神经细胞标记中的应用,展示了这一技术如何帮助科学家区分复杂的神经细胞网络,并具有宣传神经科学之美的重要作用。

上图中的景象不是黑夜中的奇幻梦境,也不是艺术家的创作,而是神经细胞交织成的网络,这些细胞来自一只小鼠的脑中的海马区域。平时我们所到的大脑标本都是灰白暗淡的颜色,而这种名叫“Brainbow”的技术则显得格外惊艳,神经细胞们个个分明,闪耀着五彩光芒。

大脑是如何变成彩虹的?这要从荧光蛋白的故事开始说起。这些美丽的颜色都是荧光,当分子吸收能量达到激发态后,它们会在较短时间内再回到比较稳定的基态,并且通过发光的方式重新释放出能量,这个过程中产生的就是荧光。一般的细胞中,原本没有那么多能发出各色荧光的物质,让它们发光,靠的是人为引入的荧光标记。而在这些荧光标记中,绿色荧光蛋白就是最为经典的一个。

绿色荧光蛋白是来自海洋的馈赠,它来自一种发光水母。

在上世纪60年代,日裔科学家下村修(Osamu Shimomura,下村脩)和美国科学家约翰森(Frank H. Johnson)首先揭开了水母发光的秘密。一开始,他们从这些水母中提取到了水母发光蛋白(aequorin),在钙离子的作用下,这种蛋白质会发出蓝光。然而,在水母身上,人们最终观察到的却是绿色的荧光,将蓝光转化为绿光的,就是水母体内的另外一种蛋白质——绿色荧光蛋白。

在发现之初,生物学家们就意识到了这种发光蛋白的价值,如果能在其他的细胞、生物组织中引入这样的蛋白质,那么在显微镜下,我们所看到的画面也就能变得更加清晰而且多彩了。上世纪80年代,普鲁切(Douglas Prasher)成功地克隆出了水母中编码绿色荧光蛋白的基因,这使得荧光蛋白标记的大量应用成为了可能。

有了这段基因,我们就可以让特定的细胞表达这些荧光蛋白,或者把绿色荧光蛋白和各种分子结合在一起,为细胞中特定的结构染上颜色。

不过,天然的绿色荧光蛋白还不够完美,它只有一种颜色,也无法进行复杂的标记。解决这一问题的,是华裔科学家钱永健(Roger Y Tsien)。通过对绿色荧光蛋白分子的种种改造,他得到了现在实验中广泛使用的增强型绿色荧光蛋白,以及蓝色、青色和黄色的新型荧光蛋白。在此之后,其他的实验室又从珊瑚虫中发现了红色的荧光蛋白。随着不断的探索和改造,生物学家“荧光调色盘”中的色彩也逐渐丰富了起来。

有了荧光调色盘上的种种色彩之后,科学家们又是如何把神经细胞变成绚丽的彩虹的呢?这还需要基因编辑和重组技术来帮忙。如果将不同荧光蛋白对应的基因片段转入细胞,让它们与目标蛋白共同表达,就可以对细胞以及细胞中的特定结构进行标记。但如果仅仅是这样做,我们一般得到只是单一的色彩,或者两三种颜色的图像。在很多情况下,这就已经够了,但要想把数量庞大、错综复杂的神经细胞彼此区分开,我们还需要更新的技术。

能做到这一点的技术出现在2007年,哈佛大学的神经生物学家杰夫•W•里奇曼(Jeff W. Lichtman)和他的团队做出了这项名叫“脑彩虹”(Brainbow)的革命性成果。通过这种技术,他们能让小鼠的神经细胞显示出了几十种不同的色彩。在这种技术中,研究者们用到了一种名叫“Cre重组酶”的酶,它可以识别特定的DNA序列,并把两个“识别标记”中间的序列删除。

研究者们把几种颜色的荧光蛋白基因串在一起,并在他们之间加上了Cre重组酶可以识别的标志序列。最终,在酶的帮助下,这些基因在细胞内会被随机地“剪掉”一部分,而剩下的部分得以表达,这样一来,细胞就可以随机地表达出各种不同的颜色了。

如此大费周章地用荧光蛋白为细胞调色,它到底有什么用呢?这种技术最大的作用,还是将某些需要研究的细胞与错综复杂的背景区分开来。通过对不同色彩的分析,可以计数细胞,也可以追踪细胞的走向,观察神经网络的连接布局以及细胞之间的相互作用。当然,让大众领略神经科学之美,也不失为“神经彩虹”重要的宣传作用。

UUID: 8e3379df-4ac7-41f0-9458-b27e7a01136d

原始文件名: /home/andie/dev/tudou/annot/AI语料库-20240917-V2/AI语料库/果壳公众号-pdf2txt/2015/2015-08-30_科学美图!Brainbow:荧光点亮神经彩虹.txt

是否为广告: 否

处理费用: 0.0042 元