1973年,斯坦利·N·科恩(Stanley N. Cohen)和赫伯特·W·博耶(Herbert W. Boyer)找到了改变生物体基因组的方法,成功将蛙的DNA插入到细菌中。20世纪70年代末,博耶的基因泰克(Genetech)公司对大肠杆菌进行基因改造,使其带有一个人源基因,最后生产出治疗糖尿病的胰岛素。很快,加利福尼亚州拉霍亚的索尔克生物研究所的科学家培育出了第一只转基因小鼠。
基因工程领域取得的这些巨大成就改变了现代医学的进程。但是,早期的基因改造方法有两大局限:不甚精确,并且难以量产。那时,DNA插入基因组的行为是随机的,科学家只能祈求好运,但愿自己能得到一个有用的突变。1990年,研究人员取得了跨越式的进步。他们设计出能在特定位点对DNA进行剪切的蛋白,突破了第一个局限。但是,每想要修改一段DNA序列,他们都必须设计一个新的蛋白,这种工作非常耗时,并且十分艰苦。
时间终于到了2012年。瑞典于默奥大学的埃马纽埃尔·卡彭蒂耶(Emmanuelle Charpentier)和加利福尼亚大学伯克利分校的珍妮弗·杜德娜(Jennifer Doudna)领导的研究人员报道,他们在细胞中发现了一种遗传机制,能让科学家以前所未有的速度编辑基因组,并且过程十分简单。此后不久,哈佛大学和麻省理工大学的一个课题组运用这种技术,一次性地对细胞基因组的多个位点进行了修改。
这种技术名叫CRISPR,是“clustered, regularly interspaced, short palindromic repeats”的缩写。利用这种序列,细菌可以对侵袭过它的病毒产生“记忆”。自从日本科学家20世纪80年代末发现CRISPR之后,科学家就一直在研究这种奇怪的基因序列。
然而,直到杜德娜和卡彭蒂耶偶然注意到一种名叫Cas9的蛋白,CRISPR才显示出它作为基因组编辑工具的巨大潜力。
2011年,杜德娜和卡彭蒂耶在波多黎各圣胡安的一次科学会议上相识。他们有很多共同点:他们的团队都在研究细菌防御病毒入侵的机制;他们都已经确认,细菌可以记住以前入侵过自己的病毒的DNA,以此来识别病毒,当该病毒再次入侵时,它们就会立刻认出“敌人”。
那次会议后不久,卡彭蒂耶和杜德娜决定合作。当时,卡彭蒂耶在于默奥大学的实验室刚刚发现,链球菌似乎会用Cas9蛋白来“捣碎”突破其细胞壁的病毒。于是,杜德娜在伯克利的实验室,也开始探究Cas9蛋白的作用机理。
很多科学发现的背后都有一连串巧事,CRISPR的故事也不例外。
卡彭蒂耶实验室的克日什托夫·黑林斯基(Krzysztof Chylinski)和杜德娜实验室的马丁·伊内克(Martin Jinek)在毗邻的城镇长大,说着同样的波兰方言。杜德娜说:“他们开始通过Skype聊天。两人一拍即合,然后就开始分享数据、讨论做实验的想法。这个项目就这样正式开始了。”两个实验室的科学家都意识到,他们或许可以用Cas9蛋白来进行基因组编辑。
基因组编辑是基因工程中的一种方法,酶是这一过程中的“分子剪刀”,可以剪切DNA。这种酶名叫核酸酶(nuclease),能在特定的位点切断双链DNA。DNA断裂后,细胞会对断裂位点进行修复。有时,细胞中一些人为导入的基因片段,会在修复的过程中插入这些位点。杜德娜和卡彭蒂耶刚开始合作的时候,科学家如果想改变或关闭一个基因,最先进的方法,是定制一种能找到特定DNA位点并对其进行切割的酶。
换句话说,每修饰一次基因,科学家都不得不设计一种新的蛋白,专门针对想要修饰的DNA序列。
但杜德娜和卡彭蒂耶意识到,Cas9蛋白——这种链球菌用于免疫防卫的酶,会用RNA来引导自己找到目标DNA。为了探测作用位点,Cas9-RNA复合物会在DNA上不停“弹跳”,直到找到正确的位点。这一过程看似随机,其实不然。Cas9蛋白的每次弹跳,都是在搜索同一段短小的“信号”序列。
Cas9会附着到DNA上,检测邻近的序列是否和充当向导的RNA匹配。这种RNA叫做向导RNA(guide RNA,简称gRNA),而只有当gRNA和DNA匹配时,Cas9蛋白才会对DNA进行切割。如果能将这套天然的RNA向导系统利用起来,研究人员在切割DNA位点时,就不用每次都构建一种新的酶了。基因组编辑可能会因此变得更简单、更便宜,也更有效。
这个横跨大西洋的团队一起对Cas9蛋白进行了几个月的研究,并且取得了突破。杜德娜还能清楚地记起那个时刻。他们的实验室坐落在伯克利校园边缘一个绿树成荫的山坡上,对面就是希腊剧院,彼时还在做博士后研究的伊内克一直在那里对Cas9蛋白进行实验。一天,他来杜德娜的办公室讨论实验结果。
面对伊内克和黑林斯基一直在讨论的一个问题,他们陷入了沉思:在自然界中——也就是在链球菌体内,Cas9蛋白倚靠的不是一个,而是两个RNA,来引导自己寻找DNA上的正确位点。如果在保留其向导功能的前提下,将两条gRNA整合成一条RNA链,结果会怎么样呢?如果只需修饰一个RNA序列,研究人员的工作速度将会得到极大的提升。
gRNA序列与目标DNA序列之间存在精妙的互补关系,利用这种关系构建一条gRNA,比定制一个核酸酶更容易。
“看着这些数据,我们突然就开窍了——这种事情经常发生,”杜德娜说道,“我们意识到,其实可以将这些RNA分子设计成一条gRNA。一套由一个蛋白质和一条gRNA组成的系统,就足以成为一个强大的基因修饰工具。我打了个寒颤,心想,‘天哪,我要赶快跑到实验室去,如果这能成功的话……’”他们真的成功了。
结果超出了杜德娜的设想(尽管她本来就抱有很高的期待)。2012年8月17日,当杜德娜和卡彭蒂耶将他们对CRISPR-Cas9的研究成果公诸于众时,该领域的科学家立刻认识到这一技术的变革性力量,他们都想知道CRISPR-Cas9究竟能做什么,一场全球性竞赛由此拉开序幕。
CRISPR技术已经加快了基因工程产业的发展,对遗传学和医学也有深远的推动作用。科学家现在只要几周时间,就能按需定制出经过基因改造的实验动物,省去了从前一年的工作量与时间。目前,研究人员正在运用该技术,探索艾滋病、阿尔茨海默病、精神分裂症等疾病的治疗方法。该技术将生物体的基因修饰过程变得相当简单与廉价,研究人员和伦理学家甚至开始担心,这会催生负面效应。